99 research outputs found

    Inhibition of Autoimmune Diabetes in NOD Mice by miRNA Therapy.

    Get PDF
    Autoimmune destruction of the pancreatic islets in Type 1 diabetes is mediated by both increased proinflammatory (Teff) and decreased regulatory (Treg) T lymphocytes resulting in a significant decrease in the Treg:Teff ratio. The non-obese diabetic (NOD) mouse is an excellent in vivo model for testing potential therapeutics for attenuating the decrease in the Treg:Teff ratio and inhibiting disease pathogenesis. Here we show for the first time that a bioreactor manufactured therapeutic consisting of a complex of miRNA species (denoted as TA1) can effectively reset the NOD immune system from a proinflammatory to a tolerogenic state thus preventing or delaying autoimmune diabetes. Treatment of NOD mice with TA1 resulted in a systemic broad-spectrum upregulation of tolerogenic T cell subsets with a parallel downregulation of Teff subsets yielding a dramatic increase in the Treg:Teff ratio. Moreover, the murine-derived TA1 was highly effective in the inhibition of allorecognition of HLA-disparate human PBMC. TA1 demonstrated dose-responsiveness and exhibited equivalent or better inhibition of allorecognition driven proliferation than etanercept (a soluble TNF receptor). These findings demonstrate that miRNA-based therapeutics can effectively attenuate or arrest autoimmune disease processes and may be of significant utility in a broad range of autoimmune diseases including Type 1 diabetes

    Sex/Gender and Socioeconomic Differences in the Predictive Ability of Self-Rated Health for Mortality

    Get PDF
    Background: Studies have reported that the predictive ability of self-rated health (SRH) for mortality varies by sex/gender and socioeconomic group. The purpose of this study is to evaluate this relationship in Japan and explore the potential reasons for differences between the groups. Methodology/Principal Findings: The analyses in the study were based on the Aichi Gerontological Evaluation Study's (AGES) 2003 Cohort Study in Chita Peninsula, Japan, which followed the four-year survival status of 14,668 community-dwelling people who were at least 65 years old at the start of the study. We first examined sex/gender and education-level differences in association with fair/poor SRH. We then estimated the sex/gender- and education-specific hazard ratios (HRs) of mortality associated with lower SRH using Cox models. Control variables, including health behaviors (smoking and drinking), symptoms of depression, and chronic co-morbid conditions, were added to sequential regression models. The results showed men and women reported a similar prevalence of lower SRH. However, lower SRH was a stronger predictor of mortality in men (HR = 2.44 [95% confidence interval (CI): 2.14–2.80]) than in women (HR = 1.88 [95% CI: 1.44–2.47]; p for sex/gender interaction = 0.018). The sex/gender difference in the predictive ability of SRH was progressively attenuated with the additional introduction of other co-morbid conditions. The predictive ability among individuals with high school education (HR = 2.39 [95% CI: 1.74–3.30]) was similar to that among individuals with less than a high school education (HR = 2.14 [95% CI: 1.83–2.50]; p for education interaction = 0.549). Conclusions: The sex/gender difference in the predictive ability of SRH for mortality among this elderly Japanese population may be explained by male/female differences in what goes into an individual's assessment of their SRH, with males apparently weighting depressive symptoms more than females

    In Situ Patrolling of Regulatory T Cells Is Essential for Protecting Autoimmune Exocrinopathy

    Get PDF
    BACKGROUND: Migration of T cells, including regulatory T (Treg) cells, into the secondary lymph organs is critically controlled by chemokines and adhesion molecules. However, the mechanisms by which Treg cells regulate organ-specific autoimmunity via these molecules remain unclear. Although we previously reported autoimmune exocrinopathy resembling Sjögren's syndrome (SS) in the lacrimal and salivary glands from C-C chemokine receptor 7 (CCR7)-deficient mice, it is still unclear whether CCR7 signaling might specifically affect the dynamics and functions of Treg cells in vivo. We therefore investigated the cellular mechanism for suppressive function of Treg cells via CCR7 in autoimmunity using mouse models and human samples. METHODS AND FINDINGS: Patrolling Treg cells were detected in the exocrine organs such as lacrimal and salivary glands from normal mice that tend to be targets for autoimmunity while the Treg cells were almost undetectable in the exocrine glands of CCR7(-/-) mice. In addition, we found the significantly increased retention of CD4(+)CD25(+)Foxp3(+) Treg cells in the lymph nodes of CCR7(-/-) mice with aging. Although Treg cell egress requires sphingosine 1-phosphate (S1P), chemotactic function to S1P of CCR7-/- Treg cells was impaired compared with that of WT Treg cells. Moreover, the in vivo suppression activity was remarkably diminished in CCR7(-/-) Treg cells in the model where Treg cells were co-transferred with CCR7(-/-) CD25(-)CD4(+) T cells into Rag2(-/-) mice. Finally, confocal analysis showed that CCR7(+)Treg cells were detectable in normal salivary glands while the number of CCR7(+)Treg cells was extremely decreased in the tissues from patients with Sjögren's syndrome. CONCLUSIONS: These results indicate that CCR7 essentially governs the patrolling functions of Treg cells by controlling the traffic to the exocrine organs for protecting autoimmunity. Characterization of this cellular mechanism could have clinical implications by supporting development of new diagnosis or treatments for the organ-specific autoimmune diseases such as Sjögren's syndrome and clarifying how the local immune system regulates autoimmunity

    Antigen-Specific Blocking of CD4-Specific Immunological Synapse Formation Using BPI and Current Therapies for Autoimmune Diseases

    Get PDF
    This is the peer reviewed version of the following article: Manikwar, P., Kiptoo, P., Badawi, A. H., BĂŒyĂŒktimkin, B. and Siahaan, T. J. (2012), Antigen-specific blocking of CD4-Specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Med Res Rev, 32: 727–764. doi:10.1002/med.20243, which has been published in final form at http://doi.org/10.1002/med.20243. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.In this review, we discuss T-cell activation, etiology, and the current therapies of autoimmune diseases (i.e., MS, T1D, and RA). T-cells are activated upon interaction with antigen-presenting cells (APC) followed by a “bull’s eye”-like formation of the immunological synapse (IS) at the T-cell–APC interface. Although the various disease-modifying therapies developed so far have been shown to modulate the IS and thus help in the management of these diseases, they are also known to present some undesirable side effects. In this study, we describe a novel and selective way to suppress autoimmunity by using a bifunctional peptide inhibitor (BPI). BPI uses an intercellular adhesion molecule-1 (ICAM-1)-binding peptide to target antigenic peptides (e.g., proteolipid peptide, glutamic acid decarboxylase, and type II collagen) to the APC and therefore modulate the immune response. The central hypothesis is that BPI blocks the IS formation by simultaneously binding to major histocompatibility complex-II and ICAM-1 on the APC and selectively alters the activation of T cells from TH1 to Treg and/or TH2 phenotypes, leading to tolerance

    Barbarians at the British Museum: Anglo-Saxon Art, Race and Religion

    Get PDF
    A critical historiographical overview of art historical approaches to early medieval material culture, with a focus on the British Museum collections and their connections to religion

    Leo-Baeck-Preis-2005

    No full text
    Hohe jĂŒdische Auszeichnung fĂŒr Prof. Peter Hommelhoff. Der Rektor der UniversitĂ€t Heidelberg konnte aus den HĂ€nden des PrĂ€sidenten des Zentralrats der Juden in Deutschland Paul Spiegel den mit 10 000 Euro dotierten Leo Baeck Preis entgegennehmen. Die Laudatio in der alten Aula der UniversitĂ€t hielt der VizeprĂ€sident des Zentralrates Salomon Korn. Er betonte das große Engagement von Professor Hommelhoff fĂŒr die der UniversitĂ€t eng verbundene Hochschule fĂŒr jĂŒdische Studien in Heidelberg. Mit dem Preis werden in Erinnerung an den jĂŒdischen Wissenschaftler und Rabbiner Leo Back Persönlichkeiten geehrt, die sich in hervorragender Weise fĂŒr die jĂŒdische Gemeinschaft in Deutschland eingesetzt haben. FrĂŒhere PreistrĂ€ger waren unter anderem Altkanzler Helmut Kohl und der ehemalige Außenminister Joschka Fischer. Auf dem Media-Server aufgenommen im Januar 2006. Dauer: 47 Sekunde
    • 

    corecore