784 research outputs found

    Granular Brownian motion with dry friction

    Full text link
    The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a 'heat bath' for the Brownian-like motion of the probe. Two ball bearings supporting the probe exert nonlinear Coulomb friction upon it. The experimental velocity distribution of the probe, autocorrelation function, and power spectra are compared with the predictions of a linear Boltzmann equation with friction, which is known to simplify in two opposite limits: at high collision frequency, it is mapped to a Fokker-Planck equation with nonlinear friction, whereas at low collision frequency, it is described by a sequence of independent random kicks followed by friction-induced relaxations. Comparison between theory and experiment in these two limits shows good agreement. Deviations are observed at very small velocities, where the real bearings are not well modeled by Coulomb friction.Comment: 7 pages, 6 figure

    Ratchet effect driven by Coulomb friction: the asymmetric Rayleigh piston

    Full text link
    The effect of Coulomb friction is studied in the framework of collisional ratchets. It turns out that the average drift of these devices can be expressed as the combination of a term related to the lack of equipartition between the probe and the surrounding bath, and a term featuring the average frictional force. We illustrate this general result in the asymmetric Rayleigh piston, showing how Coulomb friction can induce a ratchet effect in a Brownian particle in contact with an equilibrium bath. An explicit analytical expression for the average velocity of the piston is obtained in the rare collision limit. Numerical simulations support the analytical findings.Comment: 5 pages, 2 figure

    Cages and anomalous diffusion in vibrated dense granular media

    Full text link
    A vertically shaken granular medium hosts a blade rotating around a fixed vertical axis, which acts as a mesorheological probe. At high densities, independently from the shaking intensity, the blade's dynamics show strong caging effects, marked by transient sub-diffusion and a maximum in the velocity power density spectrum (vpds), at a resonant frequency ∼10\sim 10 Hz. Interpreting the data through a diffusing harmonic cage model allows us to retrieve the elastic constant of the granular medium and its collective diffusion coefficient. For high frequencies ff, a tail ∼1/f\sim 1/f in the vpds reveals non-trivial correlations in the intra-cage micro-dynamics. At very long times (larger than 1010 s), a super-diffusive behavior emerges, ballistic in the most extreme cases. Consistently, the distribution of slow velocity inversion times τ\tau displays a power-law decay, likely due to persistent collective fluctuations of the host medium.Comment: 5 pages + 4 page of supplemental material, 6 figures, to be published on Phys. Rev. Let

    Nonequilibrium Brownian motion beyond the effective temperature

    Full text link
    The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einstein's relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own "effective" temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein's relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased.Comment: 10 pages, 5 figure

    Exploring logic-in-memory architectures with skyrmion technology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Dissipative lateral walls are sufficient to trigger convection in vibrated granular gases

    Full text link
    Buoyancy-driven (thermal) convection in dilute granular media, fluidized by a vibrating base, is known to appear without the need of lateral boundaries in a restricted region of parameters (inelasticity, gravity, intensity of energy injection). We have recently discovered a second buoyancy-driven convection effect which occurs at any value of the parameters, provided that the impact of particles with the lateral walls is inelastic (Pontuale et al., Phys. Rev. Lett. 117, 098006 (2016)). It is understood that this novel convection effect is strictly correlated to the existence of perpendicular energy fluxes: a vertical one, induced by both bulk and wall inelasticity, and a horizontal one, induced only by dissipation at the walls. Here we first review those previous results, and then present new experimental and numerical data concerning the variations of box geometry, intensity of energy injection, number of particles and width of the box.Comment: 4 pages, 4 figures, conference Powders and Grains 201
    • …
    corecore