3,360 research outputs found

    BPS Saturated Amplitudes and Non-perturbative String Theory

    Full text link
    The study of the special F^4 and R^4 in the effective action for the Spin(32)/Z_2 and type II strings sheds some light on D-brane calculus and on instanton contribution counting. The D-instanton case is discussed separately.Comment: latex 4 pages, crckapb style used. Cargese 1997 Gong show.v2 English corrected. v3 correction correcte

    A geometric proof of the upper bound on the size of partial spreads in H(4n+1, q²)

    Get PDF
    We give a geometric proof of the upper bound of q(2n+1) + 1 on the size of partial spreads in the polar space H(4n + 1, q(2)). This bound is tight and has already been proved in an algebraic way. Our alternative proof also yields a characterization of the partial spreads of maximum size in H(4n + 1, q(2))

    The critical ultraviolet behaviour of N=8 supergravity amplitudes

    Full text link
    We analyze the critical ultraviolet behaviour of the four-graviton amplitude in N=8 supergravity to all order in perturbation. We use the Bern-Carrasco-Johansson diagrammatic expansion for N=8 supergravity multiloop amplitudes, where numerator factors are squares of the Lorentz factor of N=4 super-Yang-Mills amplitudes, and the analysis of the critical ultraviolet behaviour of the multiloop four-gluon amplitudes in the single- and double-trace sectors. We argue this implies that the superficial ultraviolet behaviour of the four-graviton N=8 amplitudes from four-loop order is determined by the factorization the k^8 R^4 operator. This leads to a seven-loop logarithmic divergence in the four-graviton amplitude in four dimensions.Comment: latex. 5 pages. v2: Added references and minor change

    The physics and the mixed Hodge structure of Feynman integrals

    Full text link
    This expository text is an invitation to the relation between quantum field theory Feynman integrals and periods. We first describe the relation between the Feynman parametrization of loop amplitudes and world-line methods, by explaining that the first Symanzik polynomial is the determinant of the period matrix of the graph, and the second Symanzik polynomial is expressed in terms of world-line Green's functions. We then review the relation between Feynman graphs and variations of mixed Hodge structures. Finally, we provide an algorithm for generating the Picard-Fuchs equation satisfied by the all equal mass banana graphs in a two-dimensional space-time to all loop orders.Comment: v2: 34 pages, 5 figures. Minor changes. References added. String-math 2013 proceeding contributio

    A Feynman integral via higher normal functions

    Full text link
    We study the Feynman integral for the three-banana graph defined as the scalar two-point self-energy at three-loop order. The Feynman integral is evaluated for all identical internal masses in two space-time dimensions. Two calculations are given for the Feynman integral; one based on an interpretation of the integral as an inhomogeneous solution of a classical Picard-Fuchs differential equation, and the other using arithmetic algebraic geometry, motivic cohomology, and Eisenstein series. Both methods use the rather special fact that the Feynman integral is a family of regulator periods associated to a family of K3 surfaces. We show that the integral is given by a sum of elliptic trilogarithms evaluated at sixth roots of unity. This elliptic trilogarithm value is related to the regulator of a class in the motivic cohomology of the K3 family. We prove a conjecture by David Broadhurst that at a special kinematical point the Feynman integral is given by a critical value of the Hasse-Weil L-function of the K3 surface. This result is shown to be a particular case of Deligne's conjectures relating values of L-functions inside the critical strip to periods.Comment: Latex. 70 pages. 3 figures. v3: minor changes and clarifications. Version to appear in Compositio Mathematic

    Localized gravity in non-compact superstring models

    Full text link
    We discuss a string-theory-derived mechanism for localized gravity, which produces a deviation from Newton's law of gravitation at cosmological distances. This mechanism can be realized for general non-compact Calabi-Yau manifolds, orbifolds and orientifolds. After discussing the cross-over scale and the thickness in these models we show that the localized higher derivative terms can be safely neglected at observable distances. We conclude by some observations on the massless open string spectrum for the orientifold models.Comment: 12 Pages. Based on some unpublished work presented at Quarks-2004, Pushkinskie Gory, Russia, May 24-3

    The elliptic dilogarithm for the sunset graph

    Full text link
    We study the sunset graph defined as the scalar two-point self-energy at two-loop order. We evaluate the sunset integral for all identical internal masses in two dimensions. We give two calculations for the sunset amplitude; one based on an interpretation of the amplitude as an inhomogeneous solution of a classical Picard-Fuchs differential equation, and the other using arithmetic algebraic geometry, motivic cohomology, and Eisenstein series. Both methods use the rather special fact that the amplitude in this case is a family of periods associated to the universal family of elliptic curves over the modular curve X_1(6). We show that the integral is given by an elliptic dilogarithm evaluated at a sixth root of unity modulo periods. We explain as well how this elliptic dilogarithm value is related to the regulator of a class in the motivic cohomology of the universal elliptic family.Comment: 3 figures, 43 pages. v2: minor corrections. version to be published in The Journal of Number Theor
    • …
    corecore