3,725 research outputs found

    Twenty Years of Searching for the Higgs Boson: Exclusion at LEP, Discovery at LHC

    Full text link
    The 40 years old Standard Model, the theory of particle physics, seems to describe all experimental data very well. All of its elementary particles were identified and studied apart from the Higgs boson until 2012. For decades many experiments were built and operated searching for it, and finally, the two main experiments of the Large Hadron Collider at CERN, CMS and ATLAS, in 2012 observed a new particle with properties close to those predicted for the Higgs boson. In this paper we outline the search story: the exclusion of the Higgs boson at LEP, the Large Electron Positron collider, and its observation at LHCComment: arXiv admin note: substantial text overlap with arXiv:1310.683

    Stable sets in one-seller assignment games

    Get PDF
    We consider von Neumann -- Morgenstern stable sets in assignment games with one seller and many buyers. We prove that a set of imputations is a stable set if and only if it is the graph of a certain type of continuous and monotone function. This characterization enables us to interpret the standards of behavior encompassed by the various stable sets as possible outcomes of well-known auction procedures when groups of buyers may form bidder rings. We also show that the union of all stable sets can be described as the union of convex polytopes all of whose vertices are marginal contribution payoff vectors. Consequently, each stable set is contained in the Weber set. The Shapley value, however, typically falls outside the union of all stable sets

    Analytic approximation of energy resolution in cascaded gaseous detectors

    Full text link
    An approximate formula has been derived for gain fluctuations in cascaded gaseous detectors such as GEM-s, based on the assumption that the charge collection, avalanche formation and extraction steps are independent cascaded processes. In order to test the approximation experimentally, a setup involving a standard GEM layer has been constructed to measure the energy resolution for 5.9 keV gamma particles. The formula reasonably traces both the charge collection as well as the extraction process dependence of the energy resolution. Such analytic approximation for gain fluctuations can be applied to multi-GEM detectors where it aids the interpretation of measurements as well as simulations.Comment: 6 pages, 10 figures, submitted to Adv. in High Energy Phy

    Unraveling the behavior of the individual ionic activity coefficients on the basis of the balance of ion-ion and ion-water interactions

    Get PDF
    We investigate the individual activity coefficients of pure 1:1 and 2:1 electrolytes using our theory that is based on the competition of ion-ion (II) and ion-water (IW) interactions (Vincze et al., J. Chem. Phys. 133, 154507, 2010). The II term is computed from Grand Canonical Monte Carlo simulations on the basis of the implicit solvent model of electrolytes using hard sphere ions with Pauling radii. The IW term is computed on the basis of Born's treatment of solvation using experimental hydration free energies. The two terms are coupled through the concentration-dependent dielectric constant of the electrolyte. With this approach we are able to reproduce the nonmonotonic concentration dependence of the mean activity coefficient of pure electrolytes qualitatively without using adjustable parameters. In this paper, we show that the theory can provide valuable insight into the behavior of individual activity coefficients too. We compare our theoretical predictions against experimental data measured by electrochemical cells containing ion-specific electrodes. As in the case of the mean activity coefficients, we find good agreement for 2:1 electrolytes, while the accuracy of our model is worse for 1:1 systems. This deviation in accuracy is explained by the fact that the two competing terms (II and IW) are much larger in the 2:1 case so errors in the two separate terms have less effects. The difference of the excess chemical potentials of cations and anions (the ratio of activity coefficients) is determined by asymmetries in the properties of the two ions: charge, radius, and hydration free energies.Comment: 32 pages, 8 figures, 1 TOC figur

    Galaxy shape measurement with convolutional neural networks

    Get PDF
    We present our results from training and evaluating a convolutional neural network (CNN) to predict galaxy shapes from wide-field survey images of the first data release of the Dark Energy Survey (DES DR1). We use conventional shape measurements as ground truth from an overlapping, deeper survey with less sky coverage, the Canada-France Hawaii Telescope Lensing Survey (CFHTLenS). We demonstrate that CNN predictions from single band DES images reproduce the results of CFHTLenS at bright magnitudes and show higher correlation with CFHTLenS at fainter magnitudes than maximum likelihood model fitting estimates in the DES Y1 im3shape catalogue. Prediction of shape parameters with a CNN is also extremely fast, it takes only 0.2 milliseconds per galaxy, improving more than 4 orders of magnitudes over forward model fitting. The CNN can also accurately predict shapes when using multiple images of the same galaxy, even in different color bands, with no additional computational overhead. The CNN is again more precise for faint objects, and the advantage of the CNN is more pronounced for blue galaxies than red ones when compared to the DES Y1 metacalibration catalogue, which fits a single Gaussian profile using riz band images. We demonstrate that CNN shape predictions within the metacalibration self-calibrating framework yield shear estimates with negligible multiplicative bias, m<103 m < 10^{-3}, and no significant PSF leakage. Our proposed setup is applicable to current and next generation weak lensing surveys where higher quality ground truth shapes can be measured in dedicated deep fields

    The effect of the charge pattern on the applicability of a nanopore as a sensor

    Get PDF
    We investigate a model nanopore sensor that is able to detect analyte ions that are present in the electrolyte solution in very small concentrations. The nanopore selectively binds the analyte ions with which the local concentrations of the ions of the background electrolyte (KCl), and, thus, the ionic current flowing through the pore is changed. Analyte concentration can be determined from calibration curves. In our previous study (M\'{a}dai et al. J. Chem. Phys., 147(24):244702, 2017.), we proposed a symmetric model (surface charge is negative all along the pore). The mechanism of sensing was a competition between K+^{+} and positive analyte ions, so increasing analyte concentration decreased K+^{+} current. Here we allow asymmetric charge patterns on the pore wall (positive/negative/neutral along the pore), thus, gaining an additional device function, rectification, resulting in a dual responsive device. We find that a bipolar nanopore is an efficient geometry with Cl^{-} ions being the main charge carriers. The mechanism of sensing is that more positive analyte ions attract more Cl^{-} ions into the pore thus increasing the current. Also they make the pore less asymmetric and, thus, decrease rectification. We use a hybrid computer simulation method, where a generalization of the grand canonical Monte Carlo method to non-equilibrium (Local Equilibrium Monte Carlo) is coupled to the Nernst-Planck equation with which the flux is computed

    An improved cosmological parameter inference scheme motivated by deep learning

    Get PDF
    Dark matter cannot be observed directly, but its weak gravitational lensing slightly distorts the apparent shapes of background galaxies, making weak lensing one of the most promising probes of cosmology. Several observational studies have measured the effect, and there are currently running, and planned efforts to provide even larger, and higher resolution weak lensing maps. Due to nonlinearities on small scales, the traditional analysis with two-point statistics does not fully capture all the underlying information. Multiple inference methods were proposed to extract more details based on higher order statistics, peak statistics, Minkowski functionals and recently convolutional neural networks (CNN). Here we present an improved convolutional neural network that gives significantly better estimates of Ωm\Omega_m and σ8\sigma_8 cosmological parameters from simulated convergence maps than the state of art methods and also is free of systematic bias. We show that the network exploits information in the gradients around peaks, and with this insight, we construct a new, easy-to-understand, and robust peak counting algorithm based on the 'steepness' of peaks, instead of their heights. The proposed scheme is even more accurate than the neural network on high-resolution noiseless maps. With shape noise and lower resolution its relative advantage deteriorates, but it remains more accurate than peak counting

    Establishing an Internet Based Paediatric Cancer Registration and Communication System for the Hungarian Paediatric Oncology Network

    Get PDF
    Cancer registration has developed in Europe over the last 50 years, and in the last decade intensive joint activities between the European Cancer Registries, in response to the need of pan-European harmonization of registration practices, have taken place. The Hungarian Paediatric Cancer Registry has been functioning as the database of the Hungarian Paediatric Oncology Network since 1971, aiming to follow the incidence and the treatment efficacy of malignant diseases.The goals of this globally unique open source information system are the following: 1) to raise the quality of the registration system to the European level by developing an Internet-based registration and communication system, modernizing the database, establishing automatic statistical analyses and adding an Internet website, 2) to support clinical epidemiological studies that we conduct with international collaborators on detailed analyses of the characteristics of patients and their diseases, evaluation of new diagnostic and therapeutic methods, prevention programs, and long-term quality of life and side effects.The benefits of the development of the Internet-based registration and communication system are as follows: a) introduction of an Internet-based case reporting system, b) modernization of the registry database according to international recommendations, c) automatic statistical summaries, encrypted mail systems, document repository, d) application of data security and privacy standards, e) establishment of a website and compilation of educational materials.The overall objective of this scientific project is to contribute towards the improvement of cancer prevention and cancer care for the benefit of the public in general and of cancer patients in particular
    corecore