45 research outputs found

    In Vivo Activation of the Intracrine Vitamin D Pathway in Innate Immune Cells and Mammary Tissue during a Bacterial Infection

    Get PDF
    Numerous in vitro studies have shown that toll-like receptor signaling induces 25-hydroxyvitamin D3 1α-hydroxylase (1α-OHase; CYP27B1) expression in macrophages from various species. 1α-OHase is the primary enzyme that converts 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Subsequently, synthesis of 1,25(OH)2D3 by 1α-OHase in macrophages has been shown to modulate innate immune responses of macrophages. Despite the numerous in vitro studies that have shown 1α-OHase expression is induced in macrophages, however, evidence that 1α-OHase expression is induced by pathogens in vivo is limited. The objective of this study was to evaluate 1α-OHase gene expression in macrophages and mammary tissue during an in vivo bacterial infection with Streptococcus uberis. In tissue and secreted cells from the infected mammary glands, 1α-OHase gene expression was significantly increased compared to expression in tissue and cells from the healthy mammary tissue. Separation of the cells by FACS9 revealed that 1α-OHase was predominantly expressed in the CD14+ cells isolated from the infected mammary tissue. The 24-hydroxylase gene, a gene that is highly upregulated by 1,25(OH)2D3, was significantly more expressed in tissue and cells from the infected mammary tissue than from the healthy uninfected mammary tissue thus indicating significant local 1,25(OH)2D3 production at the infection site. In conclusion, this study provides the first in vivo evidence that 1α-OHase expression is upregulated in macrophages in response to bacterial infection and that 1α-OHase at the site of infection provides 1,25(OH)2D3 for local regulation of vitamin D responsive genes

    Control of bovine mastitis: old and recent therapeutic approaches

    Get PDF
    Mastitis is defined as the inflammatory response resulting of the infection of the udder tissue and it is reported in numerous species, namely in domestic dairy animals. This pathology is the most frequent disease of dairy cattle and can be potentially fatal. Mastitis is an economically important pathology associated with reduced milk production, changes in milk composition and quality, being considered one of the most costly to dairy industry. Therefore, the majority of research in the field has focused on control of bovine mastitis and many efforts are being made for the development of new and effective anti-mastitis drugs. Antibiotic treatment is an established component of mastitis control programs; however, the continuous search for new therapeutic alternatives, effective in the control and treatment of bovine mastitis, is urgent. This review will provide an overview of some conventional and emerging approaches in the management of bovine mastitis infections.F. Gomes acknowledge the ïŹnancial support of the Portuguese Foundation for Science and Technology through the Grant SFRH/BPD/84488/2012 and for ïŹnancial support to the CEB research center

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Protein-truncating variants in BSN are associated with severe adult-onset obesity, type 2 diabetes and fatty liver disease.

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Data availability: The UK Biobank phenotype and WES data described here are publicly available to registered researchers through the UK Biobank data access protocol. Information about registration for access to the data is available at https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access. Data for this study were obtained under resource applications 26041 and 9905. The MCPS welcomes open-access and collaboration data requests from bona fide researchers. For more details on accessibility, the study’s data and sample sharing policy can be downloaded (in English or Spanish) from https://www.ctsu.ox.ac.uk/research/mcps. Available study data can be examined in detail through the study’s Data Showcase, available at https://datashare.ndph.ox.ac.uk/mexico/. SCOOP and INTERVAL WES data are accessible from the European Genome-phenome Archive with accession numbers EGAS00001000124 (SCOOP) and EGAS00001000825 (INTERVAL). snRNA-seq data are available from the NCBI Gene Expression Omnibus (GEO), under accession number: GSE243112. Source data are provided with this paper.Code availability: The pipeline code for processing, filtering, annotating and burden testing UK Biobank WES data using the UK Biobank RAP is publicly available (https://github.com/mrcepid-rap). No custom code for analyzing the UK Biobank WES data was developed for this study. The analysis code for single-nucleus sequencing is available on GitHub (https://github.com/mariachukanova1/BSN_paper) and has been deposited on Zenodo at https://doi.org/10.5281/zenodo.10687754.Obesity is a major risk factor for many common diseases and has a substantial heritable component. To identify new genetic determinants, we performed exome-sequence analyses for adult body mass index (BMI) in up to 587,027 individuals. We identified rare loss-of-function variants in two genes (BSN and APBA1) with effects substantially larger than those of well-established obesity genes such as MC4R. In contrast to most other obesity-related genes, rare variants in BSN and APBA1 were not associated with normal variation in childhood adiposity. Furthermore, BSN protein-truncating variants (PTVs) magnified the influence of common genetic variants associated with BMI, with a common variant polygenic score exhibiting an effect twice as large in BSN PTV carriers than in noncarriers. Finally, we explored the plasma proteomic signatures of BSN PTV carriers as well as the functional consequences of BSN deletion in human induced pluripotent stem cell-derived hypothalamic neurons. Collectively, our findings implicate degenerative processes in synaptic function in the etiology of adult-onset obesity.Medical Research CouncilMedical Research CouncilMedical Research CouncilMedical Research CouncilWellcome TrustMedical Research CouncilWellcome TrustWellcome Trust and Royal SocietyChan Zuckerberg InitiativeBiotechnology and Biological Sciences Research Council (BBSRC)Mexican Health MinistryNational Council of Science and Technology for MexicoCancer Research UKBritish Heart FoundationNational Institute for Health ResearchCambridge Biomedical Research CentreBotnar FoundationBernard Wolfe Health Neuroscience EndowmentResearch Englan

    Keratin and S100 calcium-binding proteins are major constituents of the bovine teat canal lining

    Get PDF
    The bovine teat canal provides the first-line of defence against pathogenic bacteria infecting the mammary gland, yet the protein composition and host-defence functionality of the teat canal lining (TCL) are not well characterised. In this study, TCL collected from six healthy lactating dairy cows was subjected to two-dimensional electrophoresis (2-DE) and mass spectrometry. The abundance and location of selected identified proteins were determined by western blotting and fluorescence immunohistochemistry. The variability of abundance among individual cows was also investigated. Two dominant clusters of proteins were detected in the TCL, comprising members of the keratin and S100 families of proteins. The S100 proteins were localised to the teat canal keratinocytes and were particularly predominant in the cornified outermost layer of the teat canal epithelium. Significant between-animal variation in the abundance of the S100 proteins in the TCL was demonstrated. Four of the six identified S100 proteins have been reported to have antimicrobial activity, suggesting that the TCL has additional functionality beyond being a physical barrier to invading microorganisms. These findings provide new insights into understanding host-defence of the teat canal and resistance of cows to mastitis

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells
    corecore