304 research outputs found

    Widespread reduction in sun-induced fluorescence from the Amazon during the 2015/2016 El Nino

    Get PDF
    The tropical carbon balance dominates year-to-year variations in the CO2 exchange with the atmosphere through photosynthesis, respiration and fires. Because of its high correlation with gross primary productivity (GPP), observations of sun-induced fluorescence (SIF) are of great interest. We developed a new remotely sensed SIF product with improved signal-to-noise in the tropics, and use it here to quantify the impact of the 2015/2016 El Nino Amazon drought. We find that SIF was strongly suppressed over areas with anomalously high temperatures and decreased levels of water in the soil. SIF went below its climatological range starting from the end of the 2015 dry season (October) and returned to normal levels by February 2016 when atmospheric conditions returned to normal, but well before the end of anomalously low precipitation that persisted through June 2016. Impacts were not uniform across the Amazon basin, with the eastern part experiencing much larger (10-15%) SIF reductions than the western part of the basin (2-5%). We estimate the integrated loss of GPP relative to eight previous years to be 0.34-0.48 PgC in the three-month period October-November-December 2015. This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'

    A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B

    Get PDF
    Upon induction of autophagy, the ubiquitin-like protein LC3 is conjugated to phosphatidylethanolamine (PE) on the inner and outer membrane of autophagosomes to allow cargo selection and autophagosome formation. LC3 undergoes two processing steps, the proteolytic cleavage of pro-LC3 and the de-lipidation of LC3-PE from autophagosomes, both executed by the same cysteine protease ATG4. How ATG4 activity is regulated to co-ordinate these events is currently unknown. Here we find that ULK1, a protein kinase activated at the autophagosome formation site, phosphorylates human ATG4B on serine 316. Phosphorylation at this residue results in inhibition of its catalytic activity in vitro and in vivo. On the other hand, phosphatase PP2A-PP2R3B can remove this inhibitory phosphorylation. We propose that the opposing activities of ULK1-mediated phosphorylation and PP2A-mediated dephosphorylation provide a phospho-switch that regulates the cellular activity of ATG4B to control LC3 processing

    Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin.

    Get PDF
    Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales

    Canopy-scale biophysical controls on transpiration and evaporation in the Amazon Basin

    Get PDF
    Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    RECCAP2 Future Component: Consistency and Potential for Regional Assessment to Constrain Global Projections

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record. Data Availability Statement: All CMIP6 model output datasets analyzed during this study are available online at https://esgf-node.llnl.gov/search/cmip6/ and code required to reproduce figures is available at https://github.com/ChrisJones-MOHC/RECCAP2Future_2023 (ChrisJones-MOHC, 2023) and Zenodo at https://doi.org/10.5281/zenodo.8420250.Projections of future carbon sinks and stocks are important because they show how the world's ecosystems will respond to elevated CO2 and changes in climate. Moreover, they are crucial to inform policy decisions around emissions reductions to stay within the global warming levels identified by the Paris Agreement. However, Earth System Models from the 6th Coupled Model Intercomparison Project (CMIP6) show substantial spread in future projections—especially of the terrestrial carbon cycle, leading to a large uncertainty in our knowledge of any remaining carbon budget (RCB). Here we evaluate the global terrestrial carbon cycle projections on a region‐by‐region basis and compare the global models with regional assessments made by the REgional Carbon Cycle Assessment and Processes, Phase 2 activity. Results show that for each region, the CMIP6 multi‐model mean is generally consistent with the regional assessment, but substantial cross‐model spread exists. Nonetheless, all models perform well in some regions and no region is without some well performing models. This gives confidence that the CMIP6 models can be used to look at future changes in carbon stocks on a regional basis with appropriate model assessment and benchmarking. We find that most regions of the world remain cumulative net sources of CO2 between now and 2100 when considering the balance of fossil‐fuels and natural sinks, even under aggressive mitigation scenarios. This paper identifies strengths and weaknesses for each model in terms of its performance over a particular region including how process representation might impact those results and sets the agenda for applying stricter constraints at regional scales to reduce the uncertainty in global projections.European Union’s Horizon 2020European Union’s Horizon 2020European Union’s Horizon 2020Joint UK BEIS/Defra Met Office Hadley Centre Climate ProgrammeCarbonWatch-NZ Endeavour Research ProgrammeSão Paulo Research FoundationSão Paulo Research FoundationSão Paulo Research FoundationNational Science FoundationAndrew Carnegie Fellow ProgramCNPqKorea Ministry of EnvironmentNatural Environment Research Council (NERC)Natural Environment Research Council (NERC)National Environmental Science Progra

    Comparative gene expression profiling of ADAMs, MMPs, TIMPs, EMMPRIN, EGF-R and VEGFA in low grade meningioma

    Get PDF
    MMPs (matrix metalloproteinases), ADAMs (a disintegrin and metalloproteinase) and TIMPs (tissue inhibitors of metalloproteinases) are implicated in invasion and angiogenesis: both are tissue remodeling processes involving regulated proteolysis of the extracellular matrix, growth factors and their receptors. The expression of these three groups and their correlations with clinical behaviour has been reported in gliomas but a similar comprehensive study in meningiomas is lacking. In the present study, we aimed to evaluate the patterns of expression of 23 MMPs, 4 TIMPs, 8 ADAMs, selective growth factors and their receptors in 17 benign meningiomas using a quantitative real-time polymerase chain reaction (qPCR). Results indicated very high gene expression of 13 proteases, inhibitors and growth factors studied: MMP2 and MMP14, TIMP-1, -2 and -3, ADAM9, 10, 12, 15 and 17, EGF-R, EMMPRIN and VEGF-A, in almost every meningioma. Expression pattern analysis showed several positive correlations between MMPs, ADAMs, TIMPs and growth factors. Furthermore, our findings suggest that expression of MMP14, ADAM9, 10, 12, 15 and 17, TIMP-2, EGF-R and EMMPRIN reflects histological subtype of meningioma such that fibroblastic subtype had the highest mRNA expression, transitional subtype was intermediate and meningothelial type had the lowest expression. In conclusion, this is the first comprehensive study characterizing gene expression of ADAMs in meningiomas. These neoplasms, although by histological definition benign, have invasive potential. Taken together, the selected elevated gene expression pattern may serve to identify targets for therapeutic intervention or indicators of biological progression and recurrence

    Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    Get PDF
    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU

    Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone

    Get PDF
    Cytosolic HSP90 requires multiple cochaperones in folding client proteins. However, the function of gp96 (HSP90b1, grp94), an HSP90 paralogue in the endoplasmic reticulum (ER), is believed to be independent of cochaperones. Here, we demonstrate that gp96 chaperones multiple Toll-like receptors (TLRs), but not TLR3, in a manner that is dependent on another ER luminal protein, CNPY3. gp96 directly interacts with CNPY3, and the complex dissociates in the presence of adenosine triphosphate (ATP). Genetic disruption of gp96–CNPY3 interaction completely abolishes their TLR chaperone function. Moreover, we demonstrate that TLR9 forms a multimolecular complex with gp96 and CNPY3, and the binding of TLR9 to either molecule requires the presence of the other. We suggest that CNPY3 interacts with the ATP-sensitive conformation of gp96 to promote substrate loading. Our study has thus established CNPY3 as a TLR-specific cochaperone for gp96
    corecore