47 research outputs found

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Should Heritage Languages be Incorporated into Interventions for Bilingual Individuals with Neurodevelopmental Disorders? A Systematic Review

    No full text
    Special education policies recognize the need for developing and preserving the heritage languages of individuals with disabilities. Yet there seems to be a disconnect between policy and practice. Should the heritage languages of bilingual individuals with neurodevelopmental disorders be incorporated into interventions? This review evaluated 18 studies that examined the effects of heritage language instruction on treatment outcomes for individuals with neurodevelopmental disorders. Overall, results suggest a small effect favoring interventions delivered in the heritage language versus interventions delivered solely in the majority language. In general, studies were also found to be of high-quality according to What Works Clearinghouse Standards. Findings are discussed in terms of recommendations for future research and practice

    Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases

    Get PDF
    Activating signal cointegrator-2 (ASC-2), a coactivator of multiple transcription factors that include retinoic acid receptor (RAR), associates with histone H3-K4 methyltranferases (H3K4MTs) MLL3 and MLL4 in mixed-lineage leukemia. Here, we show that mice expressing a SET domain mutant of MLL3 share phenotypes with isogenic ASC2(+/−) mice and that expression and H3-K4 trimethylation of RAR target gene RAR-β2 are impaired in ASC-2-null mouse embryo fibroblasts (MEFs) or in MEFs expressing siRNAs against both MLL3 and MLL4. We also show that MLL3 and MLL4 are found in distinct ASC-2-containing complexes rather than in a common ASC-2 complex, and they are recruited to RAR-β2 by ASC-2. In contrast, RAR-β2 expression is intact in MEFs devoid of menin, a component of MLL1 and MLL2 H3K4MT complexes. These results suggest that ASC-2 confers target gene specificity to MLL3 and MLL4 H3K4MT complexes and that recruitment of H3K4MTs to their target genes generally involves interactions between integral components of H3K4MT complexes and transcription factors

    CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO

    No full text
    CD26 is a T cell activation antigen that contains dipeptidyl peptidase IV activity and is known to bind adenosine deaminase. The mechanism by which CD26 costimulation potentiates T cell receptor-mediated T cell activation, leading to subsequent exertion of T cell effector function, is still not clearly defined. In this article, we demonstrate that CD26 localizes into lipid rafts, and targeting of CD26 to rafts is necessary for signaling events through CD26. Importantly, aggregation of CD26 by anti-CD26 mAb crosslinking also causes coaggregation of CD45 into rafts. Moreover, we show that CD26 directly binds to the cytoplasmic domain of CD45. Our results therefore indicate a mechanism whereby CD26 engagement promotes aggregation of lipid rafts and facilitates colocalization of CD45 to T cell receptor signaling molecules p56(Lck), ZAP-70, and TCRζ, thereby enhancing protein tyrosine phosphorylation of various signaling molecules and subsequent interleukin-2 production
    corecore