146 research outputs found

    Tissue-specific effects of acetylcholine in the canine heart

    Get PDF
    Acetylcholine (ACh) release from the vagus nerve slows heart rate and atrioventricular conduction. ACh stimulates a variety of receptors and channels, including an inward rectifying current [ACh-dependent K(+) current (I(K,ACh))]. The effect of ACh in the ventricle is still debated. We compared the effect of ACh on action potentials in canine atria, Purkinje, and ventricular tissue as well as on ionic currents in isolated cells. Action potentials were recorded from ventricular slices, Purkinje fibers, and arterially perfused atrial preparations. Whole cell currents were recorded under voltage-clamp conditions, and unloaded cell shortening was determined on isolated cells. The effect of ACh (1–10 μM) as well as ACh plus tertiapin, an I(K,ACh)-specific toxin, was tested. In atrial tissue, ACh hyperpolarized the membrane potential and shortened the action potential duration (APD). In Purkinje and ventricular tissues, no significant effect of ACh was observed. Addition of ACh to atrial cells activated a large inward rectifying current (from −3.5 ± 0.7 to −23.7 ± 4.7 pA/pF) that was abolished by tertiapin. This current was not observed in other cell types. A small inhibition of Ca(2+) current (I(Ca)) was observed in the atria, endocardium, and epicardium after ACh. I(Ca) inhibition increased at faster pacing rates. At a basic cycle length of 400 ms, ACh (1 μM) reduced I(Ca) to 68% of control. In conclusion, I(K,ACh) is highly expressed in atria and is negligible/absent in Purkinje, endocardial, and epicardial cells. In all cardiac tissues, ACh caused rate-dependent inhibition of I(Ca.

    Applications of long period gratings in solid core photonic bandgap fibers

    Get PDF
    Solid core photonic bandgap fibres are photonic crystal fibres with a solid core surrounded by high index inclusions. The guidance properties of these fibers are very sensitive to the refractive index of the inclusions, making them widely tunable and making them very promising for sensing applications. Combining these fibers with long period gratings unleashes their full potential, enabling narrow band notch filters tunable over hundreds of nm, refractive index sensors with sensitivity comparable to that of surface plasmon resonance sensors, but also the extraction of the full band diagrams of these bandgap fibres

    Integration of paper microfluidic sensors into contact lenses for tear fluid analysis

    Get PDF
    In this article, using the integration of paper microfluidics within laser-inscribed commercial contact lenses, we demonstrate the multiplexed detection of clinically relevant analytes including hydrogen ions, proteins, glucose, nitrites and l-ascorbic acid, all sampled directly from model tears. In vitro measurements involved the optimization of colorimetric assays, with readouts collected, stored and analyzed using a bespoke Tears Diagnostics smartphone application prototype. We demonstrate the potential of the device to perform discrete measurements either for medical diagnosis or disease screening in the clinic or at the point-of-care (PoC), with future applications including monitoring of ocular infections, uveitis, diabetes, keratopathies and assessing oxidative stress

    Identification of IKr Kinetics and Drug Binding in Native Myocytes

    Get PDF
    Determining the effect of a compound on IKr is a standard screen for drug safety. Often the effect is described using a single IC50 value, which is unable to capture complex effects of a drug. Using verapamil as an example, we present a method for using recordings from native myocytes at several drug doses along with qualitative features of IKr from published studies of HERG current to estimate parameters in a mathematical model of the drug effect on IKr. IKr was recorded from canine left ventricular myocytes using ruptured patch techniques. A voltage command protocol was used to record tail currents at voltages from −70 to −20 mV, following activating pulses over a wide range of voltages and pulse durations. Model equations were taken from a published IKr Markov model and the drug was modeled as binding to the open state. Parameters were estimated using a combined global and local optimization algorithm based on collected data with two additional constraints on IKrI–V relation and IKr inactivation. The method produced models that quantitatively reproduce both the control IKr kinetics and dose dependent changes in the current. In addition, the model exhibited use and rate dependence. The results suggest that: (1) the technique proposed here has the practical potential to develop data-driven models that quantitatively reproduce channel behavior in native myocytes; (2) the method can capture important drug effects that cannot be reproduced by the IC50 method. Although the method was developed for IKr, the same strategy can be applied to other ion channels, once appropriate channel-specific voltage protocols and qualitative features are identified

    Developing a utility index for the Aberrant Behavior Checklist (ABC-C) for fragile X syndrome

    Get PDF
    Purpose This study aimed to develop a utility index (the ABC-UI) from the Aberrant Behavior Checklist-Community (ABC-C), for use in quantifying the benefit of emerging treatments for fragile X syndrome (FXS). Methods The ABC-C is a proxy-completed assessment of behaviour and is a widely used measure in FXS. A subset of ABC-C items across seven dimensions was identified to include in health state descriptions. This item reduction process was based on item performance, factor analysis and Rasch analysis performed on an observational study dataset, and consultation with five clinical experts and a methodological expert. Dimensions were combined into health states using an orthogonal design and valued using time trade-off (TTO), with lead-time TTO methods used where TTO indicated a state valued as worse than dead. Preference weights were estimated using mean, individual level, ordinary least squares and random-effects maximum likelihood estimation [RE (MLE)] regression models. Results A representative sample of the UK general public (n = 349; mean age 35.8 years, 58.2 % female) each valued 12 health states. Mean observed values ranged from 0.92 to 0.16 for best to worst health states. The RE (MLE) model performed best based on number of significant coefficients and mean absolute error of 0.018. Mean utilities predicted by the model covered a similar range to that observed. Conclusions The ABC-UI estimates a wide range of utilities from patient-level FXS ABC-C data, allowing estimation of FXS health-related quality of life impact for economic evaluation from an established FXS clinical trial instrument

    Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry

    Get PDF
    Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%

    ARIA 2016 : Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle

    Get PDF
    The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA-disseminated and implemented in over 70 countries globally-is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease.Peer reviewe

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
    corecore