31 research outputs found

    Between-Population Outbreeding Affects Plant Defence

    Get PDF
    Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease

    The effects of surfactants on spilling breaking waves

    No full text
    Breaking waves markedly increase the rates of air–sea transfer of momentum, energy and mass. In light to moderate wind conditions, spilling breakers with short wavelengths are observed frequently. Theory and laboratory experiments have shown that, as these waves approach breaking in clean water, a ripple pattern that is dominated by surface tension forms at the crest. Under laboratory conditions and in theory, the transition to turbulent flow is triggered by flow separation under the ripples, typically without leading to overturning of the free surface15. Water surfaces in nature, however, are typically contaminated by surfactant films that alter the surface tension and produce surface elasticity and viscosity16, 17. Here we present the results of laboratory experiments in which spilling breaking waves were generated mechanically in water with a range of surfactant concentrations. We find significant changes in the breaking process owing to surfactants. At the highest concentration of surfactants, a small plunging jet issues from the front face of the wave at a point below the wave crest and entraps a pocket of air on impact with the front face of the wave. The bubbles and turbulence created during this process are likely to increase air–sea transfer
    corecore