297 research outputs found

    Massive Empyema Associated With Transient Hypogammaglobulinemia of Infancy and IgA Deficiency

    Get PDF
    Transient hypogammaglobulinemia of infancy (THI) is originally defined as a physiological maturation defect of immunoglobulin G (IgG) production that occurs at 3-6 months of age and lasts until 18 to 36 months of age. We report here on a 22-month-old child with THI and IgA deficiency, who had massive pneumococcal empyema. Her depressed IgG level returned to normal within 6 months, but IgA level was still low at 6 yr of age. Although THI is an age-dependent and self-limiting disorder, severe infection that includes an atypical presentation of an infection may occur in some patients and this requires evaluation with immunologic study

    Energy Level Statistics of the U(5) and O(6) Symmetries in the Interacting Boson Model

    Get PDF
    We study the energy level statistics of the states in U(5) and O(6) dynamical symmetries of the interacting boson model and the high spin states with backbending in U(5) symmetry. In the calculations, the degeneracy resulting from the additional quantum number is eliminated manually. The calculated results indicate that the finite boson number NN effect is prominent. When NN has a value close to a realistic one, increasing the interaction strength of subgroup O(5) makes the statistics vary from Poisson-type to GOE-type and further recover to Poisson-type. However, in the case of NN \to \infty, they all tend to be Poisson-type. The fluctuation property of the energy levels with backbending in high spin states in U(5) symmetry involves a signal of shape phase transition between spherical vibration and axial rotation.Comment: 38 pages, 13 figure

    Abundance ratios in the hot ISM of elliptical galaxies

    Full text link
    To constrain the recipes put forth to solve the theoretical Fe discrepancy in the hot interstellar medium of elliptical galaxies and at the same time explain the [alpha/Fe] ratios. In order to do so we use the latest theoretical nucleosynthetic yields, we incorporate the dust, we explore differing SNIa progenitor scenarios by means of a self-consistent chemical evolution model which reproduces the properties of the stellar populations in elliptical galaxies. Models with Fe-only dust and/or a lower effective SNIa rate achieve a better agreement with the observed Fe abundance. However, a suitable modification to the SNIa yield with respect to the standard W7 model is needed to fully match the abundance ratio pattern. The 2D explosion model C-DDT by Maeda et al. (2010) is a promising candidate for reproducing the [Fe/H] and the [alpha/Fe] ratios. (A&A format)Comment: 11 pages, 4 figures, to appear on A&

    Strong Ultraviolet Pulse From a Newborn Type Ia Supernova

    Full text link
    Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs. Although they are used empirically to measure cosmological distances, the nature of their progenitors remains mysterious, One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion. Here we report observations of strong but declining ultraviolet emission from a Type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star, and therefore provides evidence that some Type Ia supernovae arise from the single degenerate channel.Comment: Accepted for publication on the 21 May 2015 issue of Natur

    Performance of non-uniform tidal turbine arrays in uniform flow

    Get PDF
    Theoretical models suggest that in order to maximise their collective power out put, tidal turbines should be arranged in a single cross-stream row and optimally spaced to exploit local blockage effects. However, because it is assumed that the turbines within these arrays are identical, such models do not consider the possibility of enhanced power production through the exploitation of spanwise variations in local blockage and resistance. In this paper, we use depth-averaged numerical simulations to investigate whether the performance of a tidal turbine array can be further enhanced by varying solely the local blockage, solely the local resistance, or both local blockage and resistance together, across the array width. Our results suggest that for an initially uniform flow field, the optimal tidal turbine array is also uniform, that is to say that it comprises turbines of equal size, spacing, and resistance. This finding is encouraging because it is more cost-effective and much simpler to design each turbine to be the same and to operate in the same way. Together with earlier findings, these results also suggest a more general, and perhaps unsurprising, conclusion that tidal turbine arrays perform best when designed to match site-specific natural flow conditions

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes
    corecore