2,820 research outputs found

    The SZ Effect as a Probe of Non-Gravitational Entropy in Groups and Clusters of Galaxies

    Get PDF
    We investigate how strongly and at what scales the Sunyaev- Zel'dovich effect reflects the shifting balance between the two processes that compete for governing the density and the thermodynamic state of the hot intra-cluster medium pervading clusters and groups of galaxies: the hierarchical clustering of the DM; the non-gravitational energy and momentum fed back into the ICM by the condensing baryons. We base on a SAM of galaxy formation and clustering to describe how the baryons are partitioned among the hot, the cool and the stellar phase; the partition shifts as the galaxies cluster hierarchically, and as the feedback by stellar winds and SN explosions follows the star formation. Their impact is amplified by the same large scale accretion shocks that thermalize the gravitational energy of gas falling into the growing potential wells. We compute the Compton parameter yy, and find a relation of yy with the ICM temperature, the y−Ty-T relation, which departs from the self-similar scaling and bends down at temperatures typical of galaxy groups. We model-independently relate this with the analogous behaviour of the L_x - T relation, and discuss to what extent our results are generic of the hierarchical models of galaxy formation and clustering.Comment: 24 pages, 6 figures, submitted to MNRAS; typos correcte

    Free-free absorption effects on Eddington luminosity

    Full text link
    In standard treatments the Eddington luminosity is calculated by assuming that the electron-photon cross section is well described by the Thomson cross section which is gray (frequency independent). Here we discuss some consequence of the introduction of free-free opacity in the Eddington luminosity computation: in particular, due to the dependence of free-free emission on the square of the gas density, it follows that the associated absorption cross section increases linearly with the gas density, so that in high density environments Eddington luminosity is correspondingly reduced. We present a summary of an ongoing exploration of the parameter space of the problem, and we conclude that Eddington luminosity in high density environments can be lowered by a factor of ten or more, making it considerably easier for black holes to accelerate and eject ambient gas.Comment: 4 pages, to appear in "Plasmas in the Laboratory and in the Universe: new insights and new challenges", G. Bertin, D. Farina, R. Pozzoli eds., AIP Conference Proceeding

    Implementation of Sink Particles in the Athena Code

    Full text link
    We describe implementation and tests of sink particle algorithms in the Eulerian grid-based code Athena. Introduction of sink particles enables long-term evolution of systems in which localized collapse occurs, and it is impractical (or unnecessary) to resolve the accretion shocks at the centers of collapsing regions. We discuss similarities and differences of our methods compared to other implementations of sink particles. Our criteria for sink creation are motivated by the properties of the Larson-Penston collapse solution. We use standard particle-mesh methods to compute particle and gas gravity together. Accretion of mass and momenta onto sinks is computed using fluxes returned by the Riemann solver. A series of tests based on previous analytic and numerical collapse solutions is used to validate our method and implementation. We demonstrate use of our code for applications with a simulation of planar converging supersonic turbulent flow, in which multiple cores form and collapse to create sinks; these sinks continue to interact and accrete from their surroundings over several Myr.Comment: 39 pages, 14 figures, Accepted to ApJ

    Maximally Star-Forming Galactic Disks I. Starburst Regulation Via Feedback-Driven Turbulence

    Full text link
    Star formation rates in the centers of disk galaxies often vastly exceed those at larger radii. We investigate the idea that these central starbursts are self-regulated, with the momentum flux injected to the ISM by star formation balancing the gravitational force confining the gas. For most starbursts, supernovae are the largest contributor to the momentum flux, and turbulence provides the main pressure support for the predominantly-molecular ISM. If the momentum feedback per stellar mass formed is p_*/m_* ~ 3000 km/s, the predicted star formation rate is Sigma_SFR=2 pi G Sigma^2 m_*/p_* ~0.1(Sigma/100Msun/pc^2)^2 Msun/kpc^2/yr in regions where gas dominates the vertical gravity. We compare this prediction with numerical simulations of vertically-resolved disks that model star formation including feedback, finding good agreement for gas surface densities Sigma ~ 10^2-10^3 Msun/pc^2. We also compare to a compilation of star formation rates and gas contents from local and high-redshift galaxies (both mergers and normal galaxies), finding good agreement provided that X_CO decreases weakly as Sigma and Sigma_SFR increase. Star formation rates in dense, turbulent gas are also expected to depend on the gravitational free-fall time; if the efficiency per free-fall time is epsilon_ff ~ 0.01, the turbulent velocity dispersion driven by feedback is expected to be v_z = 0.4 epsilon_ff p_*/m_* ~ 10 km/s, relatively independent of Sigma or Sigma_SFR. Turbulence-regulated starbursts (controlled by kinetic momentum feedback) are part of the larger scheme of self-regulation; primarily-atomic low-Sigma outer disks may have star formation regulated by UV heating feedback, whereas regions at extremely high Sigma may be regulated by feedback of radiation that is reprocessed into trapped IR.Comment: 35 pages, 5 figures; accepted by the Ap

    Prestellar Core Formation, Evolution, and Accretion from Gravitational Fragmentation in Turbulent Converging Flows

    Full text link
    We investigate prestellar core formation and accretion based on three-dimensional hydrodynamic simulations. Our simulations represent local ∼1\sim 1pc regions within giant molecular clouds where a supersonic turbulent flow converges, triggering star formation in the post-shock layer. We include turbulence and self-gravity, applying sink particle techniques, and explore a range of inflow Mach number M=2−16{\cal M}=2-16. Two sets of cores are identified and compared: t1t_1-cores are identified of a time snapshot in each simulation, representing dense structures in a single cloud map; tcollt_\mathrm{coll}-cores are identified at their individual time of collapse, representing the initial mass reservoir for accretion. We find that cores and filaments form and evolve at the same time. At the stage of core collapse, there is a well-defined, converged characteristic mass for isothermal fragmentation that is comparable to the critical Bonner-Ebert mass at the post-shock pressure. The core mass functions (CMFs) of tcollt_\mathrm{coll}-cores show a deficit of high-mass cores (≳7M⊙\gtrsim 7M_\odot) compared to the observed stellar initial mass function (IMF). However, the CMFs of t1t_1-cores are similar to the observed CMFs and include many low-mass cores that are gravitationally stable. The difference between t1t_1-cores and tcollt_\mathrm{coll}-cores suggests that the full sample from observed CMFs may not evolve into protostars. Individual sink particles accrete at a roughly constant rate throughout the simulations, gaining one tcollt_\mathrm{coll}-core mass per free-fall time even after the initial mass reservoir is accreted. High-mass sinks gain proportionally more mass at late times than low-mass sinks. There are outbursts in accretion rates, resulting from clumpy density structures falling into the sinks

    Active Galaxies and Radiative Heating

    Full text link
    There is abundant evidence that heating processes in the central regions of elliptical galaxies has both prevented large-scale cooling flows and assisted in the expulsion of metal rich gas. We now know that each such spheroidal system harbors in its core a massive black hole weighing approximately 0.13% of the mass in stars and also know that energy was emitted by each of these black holes with an efficiency exceeding 10% of its rest mass. Since, if only 0.5% of that radiant energy were intercepted by the ambient gas, its thermal state would be drastically altered, it is worth examining in detail the interaction between the out-flowing radiation and the equilibrium or inflowing gas. On the basis of detailed hydrodynamic computations we find that relaxation oscillations are to be expected with the radiative feedback quite capable of regulating both the growth of the central black hole and also the density and thermal state of the gas in the galaxy. Mechanical input of energy by jets may assist or dominate over these radiative effects. We propose specific observational tests to identify systems which have experienced strong bursts of radiative heating from their central black holes.Comment: 16 pages, 13 figures, in press on the "Philosophical Transactions of the Royal Society". (Fig1.eps is a low-resolution version). Resized figures, typos in Eq. (2.1) and (2.2) correcte
    • …
    corecore