101 research outputs found

    Paradigms of public-private partnerships in end-stage renal disease care: The National Kidney Foundation Singapore

    Get PDF
    Paradigms of public-private partnerships in end-stage renal disease care: The National Kidney Foundation Singapore. Novel forms of funding chronic renal replacement therapy and other chronic kidney disease programs are urgently required in order to address the increasing global burden of end-stage renal disease (ESRD). For areas of infectious disease control in less-developed countries, the formation of public-private partnerships has successfully yielded short-term improvement in clinical outcomes. This article reviews the concept of public-private partnerships and its various formats. We argue that similar partnerships play an important role in addressing the public health problem of chronic kidney disease. Through its establishment of numerous paradigms of partnerships with private for-profit corporations in building a nationwide chronic dialysis program and through partnerships with other non-governmental institutions and healthcare institutions in order to create a new entity characterized by a separate management structure, the NKFS has been able to provide chronic dialysis care to over 70% of the country's total ESRD population. This extensive network of partnerships is currently being applied as the NKFS continues to expand its programs to focus on the prevention of chronic kidney disease at a nationwide level

    The human papillomavirus type 11 and 16 E6 proteins modulate the cell-cycle regulator and transcription cofactor TRIP-Br1

    Get PDF
    AbstractThe genital human papillomaviruses (HPVs) are a taxonomic group including HPV types that preferentially cause genital and laryngeal warts (“low-risk types”), such as HPV-6 and HPV-11, or cancer of the cervix and its precursor lesions (“high-risk types”), such as HPV-16. The transforming processes induced by these viruses depend on the proteins E5, E6, and E7. Among these oncoproteins, the E6 protein stands out because it supports a particularly large number of functions and interactions with cellular proteins, some of which are specific for the carcinogenic HPVs, while others are shared among low- and high-risk HPVs. Here we report yeast two-hybrid screens with HPV-6 and -11 E6 proteins that identified TRIP-Br1 as a novel cellular target. TRIP-Br1 was recently detected by two research groups, which described two separate functions, namely that of a transcriptional integrator of the E2F1/DP1/RB cell-cycle regulatory pathway (and then named TRIP-Br1), and that of an antagonist of the cyclin-dependent kinase suppression of p16INK4a (and then named p34SEI-1). We observed that TRIP-Br1 interacts with low- and high-risk HPV E6 proteins in yeast, in vitro and in mammalian cell cultures. Transcription activation of a complex consisting of E2F1, DP1, and TRIP-Br1 was efficiently stimulated by both E6 proteins. TRIP-Br1 has an LLG E6 interaction motif, which contributed to the binding of E6 proteins. Apparently, E6 does not promote degradation of TRIP-Br1. Our observations imply that the cell-cycle promoting transcription factor E2F1/DP1 is dually targeted by HPV oncoproteins, namely (i) by interference of the E7 protein with repression by RB, and (ii) by the transcriptional cofactor function of the E6 protein. Our data reveal the natural context of the transcription activator function of E6, which has been predicted without knowledge of the E2F1/DP1/TRIP-Br/E6 complex by studying chimeric constructs, and add a function to the limited number of transforming properties shared by low- and high-risk HPVs

    The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility

    Get PDF
    Pathological classifications in current use for the assessment of glomerular disease have been typically opinion-based and built on the expert assumptions of renal pathologists about lesions historically thought to be relevant to prognosis. Here we develop a unique approach for the pathological classification of a glomerular disease, IgA nephropathy, in which renal pathologists first undertook extensive iterative work to define pathologic variables with acceptable inter-observer reproducibility. Where groups of such features closely correlated, variables were further selected on the basis of least susceptibility to sampling error and ease of scoring in routine practice. This process identified six pathologic variables that could then be used to interrogate prognostic significance independent of the clinical data in IgA nephropathy (described in the accompanying article). These variables were (1) mesangial cellularity score; percentage of glomeruli showing (2) segmental sclerosis, (3) endocapillary hypercellularity, or (4) cellular/ fibrocellular crescents; (5) percentage of interstitial fibrosis/ tubular atrophy; and finally (6) arteriosclerosis score. Results for interobserver reproducibility of individual pathological features are likely applicable to other glomerulonephritides, but it is not known if the correlations between variables depend on the specific type of glomerular pathobiology. Variables identified in this study withstood rigorous pathology review and statistical testing and we recommend that they become a necessary part of pathology reports for IgA nephropathy. Our methodology, translating a strong evidence-based dataset into a working format, is a model for developing classifications of other types of renal disease

    Shared heritability and functional enrichment across six solid cancers

    Get PDF
    Correction: Nature Communications 10 (2019): art. 4386 DOI: 10.1038/s41467-019-12095-8Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.Peer reviewe

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship

    Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at s √ =13 TeV with the ATLAS detector

    Get PDF
    Inclusive jet and dijet cross-sections are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV. The measurement uses a dataset with an integrated luminosity of 3.2 fb−1 recorded in 2015 with the ATLAS detector at the Large Hadron Collider. Jets are identified using the anti-kt algorithm with a radius parameter value of R = 0.4. The inclusive jet cross-sections are measured double-differentially as a function of the jet transverse momentum, covering the range from 100 GeV to 3.5 TeV, and the absolute jet rapidity up to |y| = 3. The double-differential dijet production cross-sections are presented as a function of the dijet mass, covering the range from 300 GeV to 9 TeV, and the half absolute rapidity separation between the two leading jets within |y| < 3, y∗, up to y∗ = 3. Next-to-leading-order, and next-to-next-to-leading-order for the inclusive jet measurement, perturbative QCD calculations corrected for non-perturbative and electroweak effects are compared to the measured cross-sections

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore