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Abstract  

 

COPD and lung cancer are major lung diseases affecting millions worldwide. Both diseases 

have links to cigarette smoking, and exert a considerable societal burden. People suffering from 

COPD are especially at a higher risk of developing lung cancer and are more susceptible to 

poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, 

possibly sharing common traits such as an underlying genetic predisposition, epithelial and 

endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of 

excessive extracellular matrix, angiogenesis and susceptibility to DNA damage and cellular 

mutagenesis. In fact, COPD could indeed be the driving factor for lung cancer, providing a 

conducive environment that propagates its evolution. In the early stages of smoking, the body’s 

defences provide a combative immune/oxidative response and DNA repair mechanisms are 

likely to subdue these changes to a certain extent; however, in patients with COPD with lung 

cancer the consequences could be devastating, potentially contributing to slower post-operative 

recovery after lung resection and increased resistance to radio and chemotherapy. Vital to the 

development of new-targeted therapies is an in-depth understanding of the various molecular 

mechanisms that are associated with both pathologies. Thus in this comprehensive review, we 

shall provide a detailed overview of the possible underlying factors that link COPD and lung 

cancer and current therapeutic advances both from both human and pre-clinical animal models 

that can effectively mitigate this unholy relationship. 
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Key points –  

 
There is consistent evidence that COPD and lung cancer share common pathological 

mechanisms but more understanding is needed. Only by understanding what is happening new 

therapeutic targets may emerge.   

 

Since 90% of the cancers in human body are of epithelial origin, therefore it is quite possible 

that epithelial mesenchymal transition (EMT) is the potential link between COPD and lung 

cancer and is further exaggerated by associated pathologies such as angiogenesis, oxidative 

stress and inflammation.  

 

Inhaled corticosteroids suppress EMT in COPD patients and decrease lung cancer risk as 

shown in epidemiological studies. EMT might be the process through which inhaled 

corticosteroids are showing anti-cancer effects. This suggests EMT as a novel therapeutic target 

for management of both COPD and lung cancer.  

 

Majority of the lung cancer and obliteration of small airways occurs quite early in COPD. 

Therefore, it is important to understand mechanism that gets switched on early in the disease, 

to have more personalised early intervention.  

 
Exercise training should be part of the multidisciplinary management of patients with both 

COPD and lung cancer.  

 



1. COPD and lung cancer  
 

Chronic obstructive pulmonary disease (COPD) is a systemic inflammatory condition 

associated with several comorbidities, including lung cancer. Compared to smokers without 

COPD, people with COPD are twice as likely to develop lung cancer, a common cause of death 

in COPD [1]. Further, patients with lung cancer and concomitant COPD have a worse survival 

than patients with lung cancer without COPD [2-4]. Although association between both of 

these diseases has been established for decades, therapeutic approaches for preventing lung 

cancer in patients with COPD remain limited. Co-existing COPD may limit treatment options 

for lung cancers and thus must be assessed and managed in a timely manner. Lung cancer is 

now considered one of the most common forms of cancer in the world, with 1.8 million new 

cases detected annually (as of 2015) and 1.6 million deaths worldwide [5]. The current average 

survival rate for lung cancer patients is 5 years in population that varies from 4-17% depending 

on regional differences and this has been attributed to the poor advances in treatment and 

diagnostics [5, 6]. Worldwide, smoking prevalence has steadily increased and is currently the 

major contributor, with about 80% of lung cancer related deaths linked to smoking in the 

United States (US) and France [7], 61% in Asia, and 40% in sub-Saharan Africa. Other causes 

of lung cancer also includes second hand tobacco smoking, and with over 21,400 lung cancer 

deaths in non-smokers annually [8]. In lower and middle-income countries the risks for lung 

cancer are also associated with indoor air pollution mostly due to combustion of wood or coal 

used for cooking and heating purpose [9]. A recent estimate by Australian Institute of Health 

and Welfare (AIHW) [10] found that lung cancer was the leading cause of death for both male 

and female Australians followed by colorectal, breast, prostrate, and pancreatic cancer. In 2017, 

nearly 12,500 Australians were diagnosed with lung cancer, which is 34 people every day [10]. 

Lung cancer also remained the highest in overall burden among different cancers [10]. 

 

Lung cancer are broadly classified into two major types; non-small-cell lung cancer (NSCLC) 

and small-cell lung cancer (SCLC) [11, 12]. NSCLC constitute 85% of all lung cancers, and is 

further characterised into squamous cell carcinoma (SqCC), adenocarcinoma, and large cell 

carcinoma. SqCC  is the most common form of NSCLC, and accounts for up to 30% of all lung 

cancers [13]. While SqCC typically arises from large airway bronchial squamous epithelium, 

adenocarcinoma arises from the secretory (glandular) cells that are located in the distal 

epithelium lining of the lung bronchi [14]. Although adenocarcinoma is most often found in 

smokers, it is also the more prevalent variant of NSCLC in non-smokers. Large-cell carcinoma 

consists of large-sized cells that are anaplastic and arises from large airways [15]. In addition 

to these common subtypes of NSCLC, there are also other variants, including bronchoalveolar 

carcinoma, mixed and undifferentiated pulmonary carcinomas.  

 

Small-cell lung cancer (SCLC) usually arises centrally in the chest (large airways or lymph 

nodes) [16]. It is associated with paraneoplastic syndromes at presentation such as 

inappropriate secretion in antidiuretic hormone as small-cell tumours contain dense 

neurosecretory granules that can then give this tumour endocrine/paraneoplastic syndrome 

components. SCLCs have traditionally been staged into limited and extensive stage disease 

[17]. They are divided into typical and atypical and can grow either in the airways or in the 

lung periphery [16, 17]. Like SCLC, carcinoid tumours are characterised as neuroendocrine 

tumours, which are commonly located in the gastrointestinal tract,  and occasionally in the lung 

[18].  

 

 

 



2. Chemoprevention for lung cancer in COPD 
 

To date, smoking cessation is the only proven effective approach for preventing lung cancer in 

patients with COPD [19-21]. In view of potential shared mechanism of chronic inflammation 

in both diseases, chemoprotective effect of anti-inflammatory agents in COPD population has 

been assessed. Three retrospective studies of patients with COPD from different countries 

found a reduced risk of lung cancer in those using inhaled corticosteroids [22-24]; Table 1), 

with a negative dose-response relationship between the dose of inhaled corticosteroids and the 

risk of developing lung cancer [22-24]. A meta-analysis of seven randomized controlled trials 

assessing the effects of inhaled corticosteroids in COPD (n = 5085) revealed a trend towards 

decreased lung cancer mortality in the treatment group compared to the placebo group [25]. In 

contrast, inhaled corticosteroids have not been shown to exert significant chemopreventive 

effects in smokers with premalignant lung lesions [26, 27]. The exact mechanisms through 

which inhaled corticosteroids exert these anti-cancer effects are not clear, however, we will 

discuss potential mechanisms later in this review.  

 

Statins have also been shown to have a possible role in preventing lung cancer [28]. A 

retrospective cohort study of more than 40,000 patients with COPD reported that the use of 

statins reduced lung cancer risk by 63% [29]. However, neither inhaled corticosteroids nor 

statins have been evaluated in prospective controlled trials. Given the lack of definitive 

evidence, neither agent should be used solely for their potential chemoprotective effects in 

patients with COPD. Chemoprevention for lung cancer has also been investigated in ever-

smokers who may have COPD. Pre-clinical and epidemiologic studies indicated potential 

protective roles of antioxidants in preventing cancers [30].  However, randomised controlled 

trials on lung cancer prevention using antioxidant supplements in ever-smokers have been 

disappointing. Neither individual or combination supplementation of alpha-tocopherol, beta-

carotene and retinol was found to reduce lung cancer risk in major randomised controlled trials, 

the Alpha-Tocopherol, Beta-Carotene Cancer Prevention study (ATBC) [31] and Beta-

Carotene and Retinol Efficacy trial (CARET)[32]. Indeed, the ATBC and CARET studies, 

which include over 47,000 ever-smokers in total, have consistently shown an increased risk of 

lung cancer with beta-carotene supplementation in ever-smokers [31, 32]. A recent prospective 

cohort study of vitamin B supplementation for lung cancer found that high-dose vitamin B6 or 

B12 supplementation increased lung cancer risk in male smokers [33]. The mechanism of 

increased lung cancer risk with micronutrient supplementations is unclear.  

 

3. Impact of COPD and lung cancer on exercise capacity 

 

Exercise capacity in patients with chronic respiratory diseases such as COPD and/or lung 

cancer is impaired and often limited by symptoms such as dyspnoea and leg fatigue [34]. In 

patients with COPD, exercise intolerance can result from one or a combination of the 

following: ventilatory limitation, impaired gas exchange, atrophy of peripheral muscles and/or 

peripheral muscle weakness and cardiac dysfunction [34]. In those with concomitant lung 

cancer, exercise capacity can be further reduced by the tumour(s) itself, which disrupts 

pulmonary mechanics and gas exchange, as well as a result of the lung cancer treatment, which 

can include lung resection, chemotherapy, radiotherapy and other options [35]. 

 

Exercise capacity of patients with COPD and/or lung cancer can be measured using either 

laboratory-based (such as maximal incremental cardiopulmonary exercise test [CPET]) or 

field-based exercise tests (e.g. six-minute walk test [6MWT] and incremental shuttle walk test 

[ISWT]). The importance of assessing exercise capacity in these populations is well-



established. In both patients with COPD and patients with lung cancer the peak rate of oxygen 

consumption (VO2peak) measured during a CPET has been shown to be a strong predictor of 

mortality [36, 37]. Furthermore, VO2peak measured before surgery is a strong predictor of 

postoperative pulmonary complications for patients undergoing lung resection for NSCLC [36] 
Of note, the performance during field-based walking tests have also demonstrated important 

prognostic value. A systematic review of 13 studies reported the association between six-

minute walk distance and mortality in patients with COPD [38]. In patients undergoing lung 

resection for NSCLC, poor performance in the 6MWT or the ISWT (i.e. < 400 m) before 

surgery is associated with an increased risk of postoperative pulmonary complications [39, 40].   

 

4. The role of exercise training/therapy   

 
Exercise training has been shown to improve exercise capacity in both patients with chronic 

lung diseases and patients with different types of cancer. In fact, exercise training, which is the 

cornerstone of pulmonary rehabilitation, is an integral component for management of patients 

with COPD. [41] When compared to COPD, research on exercise training in patients with lung 

cancer is on its infancy. However, recent studies have demonstrated its value across the whole 

lung cancer continuum, especially in patients with NSCLC [42-45].   

 

Pulmonary rehabilitation, including exercise training, should be offered to patients with stable 

COPD or following an exacerbation of their disease [34, 46]. A Cochrane review of 65 

randomised controlled trials (RCT’s) concluded that pulmonary rehabilitation significantly 

improves exercise capacity, health related quality of life (HRQoL), and symptom control in 

patients with COPD [47]. Of note, there was no difference between exercise training only and 

more complex pulmonary rehabilitation programmes [47]. Pulmonary rehabilitation following 

an exacerbation of COPD has been shown to reduce hospital readmissions [48]. In patients 

with early stage NSCLC, both preoperative and postoperative exercise training programmes 

have demonstrated to be effective at improving health outcomes [49, 43]. However, despite the 

growing evidence of the benefits of exercise training in this population, referral of such patients 

to exercise training programmes is still low [50]. A standard pulmonary rehabilitation exercise 

program runs between 6 to 8 weeks in duration. To minimise surgical delay, a modified 

exercise program of shorter duration with more frequent sessions is more appropriate for 

patients with lung cancer. Preoperative exercise training is mainly comprised of aerobic 

training and usually conducted whilst patients are waiting for surgery. In most studies to date, 

this timeframe ranged between 1 to 4 weeks [43]. In both cohort studies and a systematic review 

of randomized controlled trials (RCTs), short-term (2 to 4 weeks) intensive pre-operative 

pulmonary rehabilitation (or ‘pre-habilitation’) significantly improved baseline lung function, 

exercise capacity and symptoms in patients with lung cancer [51, 52, 43]. In addition, pre-

operative exercise training was associated with improved lung function recovery after surgery 

and reduced post-operative pulmonary complications (51, 73).   

 

A decline in exercise capacity and lung function, which is an important prognostic factor, is 

commonly observed following lung resection for NSCLC [53, 54, 36]. Postoperative exercise 

training programmes should be tailored to improve exercise capacity and health outcomes that 

may have been negatively affected by the lung resection. The usual duration and characteristics 

of the postoperative programme are derived from the COPD pulmonary rehabilitation 

literature. Programmes range between 8 to 12 weeks; sessions are performed 2 to 3 times/week 

and include both aerobic and resistance training. Postoperative exercise training has been 

shown to improve exercise capacity (VO2peak and six-minute walk distance),[49, 42, 44] total 

muscle mass[44] and HRQoL [44].  



In patients with advanced lung cancer exercise training programmes should aim to prevent 

deterioration in important clinical outcomes, control symptoms and maximise independence. 

This is an area of growing interest amongst researchers and clinicians, and there are several 

RCT’s being conducted to investigate effectiveness of exercise training in this population [55-

57]. To date, exercise training has been shown to be feasible and safe in patients with advanced 

lung cancer [58].     

 

5. Perioperative care for surgical candidates 
 

Surgical resection remains the treatment of choice for patients with early-stage NSCLC and 

co-existing COPD who have adequate physiologic reserve. Patients with COPD have higher 

post-operative morbidity and mortality following lung resection [59-62]. The degree of lung 

function impairment correlates with post-operative complications. Patients with lung cancer 

may have undiagnosed COPD or under-treated COPD. Timely assessment and management of 

COPD during perioperative period are important for optimisation of baseline lung function and 

fitness in order to minimise potential surgical morbidities. The evidence on short-term effects 

of these approaches for improving perioperative outcomes is limited. 

 

Long-acting bronchodilators, including long-acting muscarinic antagonists (LAMAs) and 

long-acting beta2-agonists (LABAs), are the mainstay therapy for long-term management of 

patients with COPD. Both agents have been shown to improve dyspnoea, lung function, 

exercise capacity and health-related quality of life, and to reduce exacerbation rate in patients 

with stable COPD [63, 64]. Perioperative commencement of long-acting bronchodilators, 

within 1 to 2 weeks prior to thoracic surgery significantly improved pre-operative lung function 

[65, 66]. Initiation of LAMAs or LABAs prior to surgery has also been shown to reduce post-

operative cardiorespiratory complications in patients with lung cancer [67, 68]. A randomized 

controlled trial by Suzuki et al demonstrated that the perioperative use of combined LAMA 

and LABA improved post-operative lung function and health-related quality of life in patients 

with COPD, particularly in those with moderate-to-severe disease [69]. Cardiovascular 

complications are common following thoracic surgery, particularly in those with COPD who 

are at high risk of cardiovascular events [61, 70]. Concerns have been raised that cardiovascular 

adverse events could be associated with the use of long-acting bronchodilators. Activation of 

beta2-agonists with LAMAs can precipitate arrhythmias, myocardial ischaemia and congestive 

heart failure. Muscarinic receptor antagonists have been associated with cardiovascular events 

in observational and clinical trials [67, 71]. However, increased incidence of post-operative 

cardiac complications, including arrhythmias, with the use of LABAs and LAMAs has not been 

reported in retrospective studies [67, 71].  

 

Although long-term use of inhaled corticosteroids has been shown to reduce exacerbations in 

patients with moderate-to-severe COPD, they have also been demonstrated to be associated 

with an increased risk of pneumonia [72-74] [75-78]. A retrospective study by Yamanashi et 

al revealed no association between perioperative use of inhaled corticosteroids and post-

operative respiratory complications [79]. Further, addition of inhaled corticosteroids to dual 

long-acting bronchodilators was associated with improved pre-operative lung function and 

reduced post-operative pulmonary complications in patients with COPD [66].    

 

To achieve the best outcomes for patients with lung cancer and COPD, optimising management 

of COPD should be integrated into routine care. Smoking cessation and short-term intensive 

preoperative pulmonary rehabilitation should be advocated. Dual bronchodilation with LAMA 

and LABA is the preferred therapy for improving patients’ baseline clinical status. Pre-



operative use of inhaled corticosteroids may have additional clinical benefits, particularly in 

those with moderate-severe COPD.  

 

6. Lung cancer radiotherapy  
 

Radiotherapy improves loco-regional disease control and survival in patients with lung cancer. 

However, radiation pneumonitis is a concerning side effect of thoracic radiotherapy as lungs 

are exquisitely sensitive to ionizing radiation. The incidence of radiation pneumonitis in lung 

cancer varies depending upon irradiation techniques and regimen. The reported incidence of 

clinically symptomatic radiation pneumonitis is up to 17% among patients undergoing radical 

radiotherapy [80, 81]. Patients with lung cancer are commonly being treated using newer 

irradiation techniques such as intensity-modulated radiotherapy (IMRT) and stereotactic body 

radiotherapy (SBRT) which provide more optimal radiation dose distribution and lower impact 

to normal tissue. In comparison to conventional radiotherapy, IMRT uses an involved-site 

technique to alter the intensity of radiation in different parts of a single radiation beam. On the 

other hand, SBRT administers higher doses of radiation over fewer fractions to an accurately 

delineated target. The use of IMRT has been shown to reduce rates of severe pneumonitis when 

compared to conventional radiotherapy (3.5% vs 7.9%) [82]. Clinically significant radiation 

pneumonitis develops in less than 10% of patients receiving SBRT for lung cancer [83, 84].  

 

Data are conflicting regarding the effect of COPD on the risk of radiation pneumonitis. 

Previous retrospective studies reported that COPD was associated with an increased incidence 

of radiation pneumonitis, including in those who received SBRT [85, 86].  However, in patients 

with lung cancer treated with radiotherapy, patients with severe COPD experienced milder 

radiation pneumonitis compared to those with normal lung function or milder COPD [87, 88]. 

It is possible that the lack of lung tissue associated with the presence of emphysema in patients 

with severe COPD reduces the potential for radiation-induced lung toxicity. Systemic 

glucocorticoids remain the mainstay therapy for patients with symptomatic radiation 

pneumonitis, with limited evidence suggesting that high-dose inhaled budesonide 800 μg twice 

daily may be a potential alternative therapeutic option [89].  

 

 

7. Systemic therapies 
 

While systemic chemotherapy is the standard of care for patients with advanced lung cancer, 

recent development of tyrosine kinase inhibitors (TKIs) and immunotherapy has revolutionised 

the management for these patients. Tyrosine kinase inhibitors are small molecule inhibitors of 

enzymes that regulate cellular growth factor signalling, while immunotherapies are monoclonal 

antibodies directed against immune checkpoint proteins to enhance endogenous immune 

responses against tumour cells [90]. Current approach of systemic therapies in lung cancer 

focuses on tailoring treatment choice according to tumour histology and molecular profiles. 

Compared to chemotherapy, TKIs and immunotherapies show promising results with sustained 

responses in selected patients. Although new systemic therapeutic agents are generally less 

toxic than systemic chemotherapy with favourable safety profiles, their unique mechanisms of 

action can result in a different array of side effects.    
 

Drug-related pneumonitis has been reported with the use of TKIs and immunotherapies. 

Systematic reviews found that the incidences for drug-related pneumonitis were 1.2% for 

epidermal growth factor receptor (EGFR) TKIs, 2.1% for anaplastic lymphoma kinase (ALK) 

TKIs and 1.3-3.6% for immunotherapies [91-93]. The mortality rates of drug-related 



pneumonitis were 22.8% for EGFR TKIs and 9% for ALK TKIs. Although COPD per se has 

not been identified as a risk factor for drug-induced pneumonitis, cigarette smoking is 

associated with an increased incidence of pneumonitis [94]. Interstitial lung disease, another 

risk factor for drug-induced pneumonitis, not uncommonly co-exists in patients with COPD 

[95]. In addition, long-term inhaled corticosteroids may increase the risk of Pneumocystis 

jiroveci pneumonia in patients with lung cancer and co-existing COPD who are treated with 

systemic therapies [96, 97]. This possible risk should be weighed against any potential 

improvement in lung function or symptoms achievable through the use of inhaled 

corticosteroids in individual patients, after considering other risk factors for opportunistic 

infection. It is important to monitor symptoms and lung function in patients with COPD and 

lung cancer who receive these agents in order to detect possible drug-related adverse effects 

early. 
 

Given that immunotherapies can modulate T-cell response via inhibition of immune 

checkpoints, they may be of potential therapeutic value for COPD. There are emerging data 

suggesting a potential role of dysregulated immune checkpoints leading to excessive T cell 

response in COPD [98]. Given the complex interplay of various inflammatory pathways in 

COPD, further investigations are required before translating this knowledge into clinical 

management.   

 

8. Mechanisms linking COPD and lung cancer   

The  major mechanisms linking COPD and lung cancer are likely related to common traits of 

both diseases, such as, oxidative stress, inflammation, genetic predisposition, epigenetics in 

lung cancer and COPD, extracellular vesicles (EVs), epithelial-mesenchymal transition (EMT), 

endothelial to mesenchymal transition (EndoMT), extracellular matrix (ECM) and 

angiogenesis. COPD has been shown to be a risk factor for lung cancer [99]; COPD patients 

are at five-fold higher risk to develop lung cancer as compared to those with normal pulmonary 

function [100]. Here, we discuss common mechanisms shared by both of these diseases.  

 

8.1 Oxidative stress  

 

Cigarette smoke contains more than 4000 different types of poisonous chemicals and is known 

to generate greater than 1000 oxidants per puff; oxidative stress can cause damage to the lung 

tissue by inducing cellular proteomic and transcriptomic changes. Reactive oxygen species 

(ROS) and reactive nitrogen species (RNS) are among the more potent molecular candidates 

that interact with vital cellular organelles such as mitochondria and endoplasmic reticulum to 

cause potentially devastating imbalances in cellular metabolism. 

 

In both COPD and lung cancer, there are substantial evidence that points to increased ROS and 

RNS activity causing systemic cellular breakdown as well as inducing irreversible DNA 

damage. ROS generated through cigarette smoke directly affects inflammatory cells, 

systematically reducing their ability to mount efficient immune response to infections as well 

as obliterating cancer cells. In smokers and COPD patients Morlá et al [101] observed that 

peripheral  lymphocytes had shorter telomere length compared to normal healthy subjects, thus 

leading to a shorter cellular lifespan. This has been attributed to ROS, which are known to 

accelerate the process of cellular aging. Similar studies by Ceyalan et al. [102] also identified 

that circulating leukocytes in this population had severely damaged DNA with a considerable 

increase in lipid peroxidation mutagen markers such as plasma malondialdehyde (MDA) and 

TBA-reactive substances (TBARS). Thus, decreasing life span and DNA damage in 



lymphocytes in smoker and COPD patients make them more susceptible to cancer, in part due 

to weakened immune response resulting in inability to remove transformed or mutated cells. 

This fits with our current findings, where we recently reported that early COPD is associated 

with decrease in key inflammatory cell populations and making patients more susceptible to 

respiratory infections as well [103-105, 77, 78].  

 

In lung cancer, elevated levels of ROS induce single or double-stranded DNA breaks and 

abnormal DNA crosslinking [106]. This would result in arrest or induction of unwarranted 

transcription, replication errors, and genomic instability, all of which could lead to cancer 

induction and spread. In fact, common toxic oxidative chemicals from smoking such as B(a)P 

diol epoxide (BPDE) cause irreversibly damage to the DNA by forming DNA adducts through 

covalent binding or oxidation. BPDE–DNA adducts formation, if left unrepaired by nucleotide 

excision repair mechanisms, can block the transcription of essential genes, leading to 

unwarranted cellular effects [107]. Genome-Wide Association Study (GWAS) studies have 

also revealed that suboptimal DNA repair capacity (DRC) as a major determinant for genetic 

susceptibility to lung cancer although there have been considerable inter-individual variation 

in DRC partly due to the variability in DNA repair genes [108]. 

 

ROS also induces cellular senescence via DNA damage, arrests cellular growth and alters their 

function. Senesced immune cells have activated protein complexes leading to a condition 

termed senescence-associated secretory phenotype (SASP) which produce phlogogenic 

substances such as IL-1, IL-6, and IL-8 [109]. The cytokines produced are potent attractors and 

activators of innate immune cells, which cause tissue damage by producing even more 

oxidizing molecules, released mainly to destroy pathogens which are not necessarily there 

[110]. In lung cancer, cytokines that are enhanced in SASP complex are also known to be a 

prognostic marker for NSCLC. Interestingly, among them IL-6 is known to initiate growth and 

spread of lung cancer in mouse models, and has been attributed to the IL-6/STAT3 pathways 

[111].   

 

The impact of ROS and their association to smoking and lung cancer and COPD are of 

paramount importance and further understanding the underlying mechanisms could possible 

provide new therapeutic opportunity for early interventions. 

 

8.2 Inflammation  

 

Airway inflammation is known to play a critical role in COPD and cancer [112]. Over many 

years, the literature has provided important insight into the increases of both innate and 

adaptive immune cells in both bronchoalveolar lavage (BAL) and sputum samples in COPD 

[113, 114]. However, evidence suggests substantial contradiction about the actual picture of 

the type of inflammation in the airway wall wherein hypo-cellularity or cellular 

dysfunctionality/abnormalities are observed [114]. 

 

In lung cancer, it remains to be deciphered whether there is casual role of inflammation in 

enhancing mutations in cancer. However, inflammatory factors can enhance the progressive 

capacity of cancer cells. For examples, increased activation of NF-κB activity results in lung 

inflammation and substantial pro-tumorigenic effect. The effector cell population that mediates 

tumorigenicity are macrophages, which could be recruited to the lungs because of the epithelial 

cell induced NF-κB activation [115]. A number of studies have reported increase in alveolar 

and luminal macrophages in normal lung function smokers and COPD current smokers when 

compared to non-smoker controls [116]. Further, sub-phenotyping the macrophages in these 



patients groups also revealed predominantly M2 macrophages, with increased expression of 

phagocytic receptor CD163/CD206 [117, 114]. This increase in M2 macrophages switch was 

identified to be promoted by pro- Th2/M2 cytokines such as IL-4, IL-10, IL-13, CCL22, and 

IL-6 among others [114]. Interestingly, in tumour microenvironment itself, tumour-associated 

macrophages (TAMs) were shown to be predominantly M2 as well, which suggest that 

polarization of macrophages observed in mild-moderate COPD patients could be pro-

tumorigenic [118]. A recent meta-analysis with over 2500 NSCLC patients [119], observed 

that M2 macrophages were indeed the dominant macrophage phenotype and specifically the 

increase in survival of NSCLC patients was attributed to the sub-type of macrophages that 

dominated the tumour microenvironment [119, 118]. They concluded that patients with larger 

numbers of M2 macrophages had lesser chances of survival than those with M1 macrophage 

phenotype. Other than macrophages, lymphocytes especially cytotoxic CD8+ T cells also form 

an important link in both COPD and lung cancer. Interestingly, CD8+ T cells are the dominant 

T cell phenotype in mild-moderate COPD patients over CD4 T cells and this dominance may 

be partly due to increased susceptibility of COPD patients to viral infections [113]. Recently, 

McKendry et al [120] provided evidence of increased expression of PD-1 in CD8+ T cells and 

the ligands PD-L1 on macrophages in ex-vivo samples from mild-moderate COPD patients. 

The interaction between PD-1 and its ligand PD-L1 induce cell cycle arrest resulting in T cell 

anergy. Further, external administration of influenza virus led to an increased propensity of 

dysfunctional CD8+ T cells, estimated by their decreased ability to degranulate [120]. Similar, 

increased expression of PD-1 on CD8+ T cells was found to be especially higher in peripheral 

blood of patients with NSCLC and their interaction with PD-L1 in the tumour milieu is now 

an established target for antibody based therapeutic interventions such as Pembrolizumab in 

advance stages of cancer [121, 122].  

 

These studies are suggestive indicators that orientation of immune cell expression patterns in 

lung cancer are observed quite early in smokers and COPD patients than previously thought 

and that detecting these changes could help to design more effective future diagnosis and 

therapies that can address this more efficiently. 

 

8.3 Role of extracellular vesicles (EVs) 

 

Extracellular vesicles (EVs) are small membranous vesicles that are secreted or shed by cells. 

EVs are categorized as exosomes, ectosomes, microvesicles, or apoptotic bodies defined by the 

size of the particle [123]. In humans, EVs can be detected in various body fluids, including 

blood, urine, saliva, breast milk, ascites, and cerebrospinal fluid among others. The size of EVs 

vary from 30-1000 nm, depending on the type of EV, such as exosomes are the smallest (30-

100 nm) and larger are apoptotic bodies that are up to 100 nm [124]. Exosomes can play a 

crucial role in both COPD and lung cancer. EVs in general, are known to actively regulate 

tumour microenvironment (TME) by altering the immune response or through modulating 

through epithelial transition, fibroblasts activation or regulating angiogenesis [125]. The 

changes to the TME could take place through selective transfer mechanisms and would ideally 

involve both proteins and nuclear materials such as RNA. For examples, McCready et al [126] 

observed that HSP90α, in tumour associated secretory exosomes increases invasiveness of 

cancer cells through the activation of plasmin and annexin-II. Interestingly, HSP90α protein is 

abundant in COPD patients and act as potent biomarkers along with HSP 27 and 70 [127]. 

HSP90 potentiates epithelial mesenchymal transition (EMT) in several forms of cancer [128] 

and this phenomenon is active in early stage COPD patients as well, pointing towards possible 

association. Similar to transfer of proteins, miRNA-containing exosomes can be a determining 

factor in both lung cancer and other chronic lung disease [129]. miRNAs are known to 



selectively inhibit or silence mRNA translational process, thus acting as an important cellular 

modulator. For example, miR-200 family of miRNA can actively inhibit TGF-β1 induced EMT 

activity in airway epithelial cells [130] and forms a double negative feedback loop with a family 

of EMT-inducing transcription factors ZEB [131]. Observation in both lung cancer and COPD 

suggest a significant reduction in cellular miR-200 and an increase in extracellular exosomal 

miR-200 [132, 133]. The decrease in exosomal miRNA suggest active cellular expulsion 

through exocytosis of this essential regulator, leading to an increase in epithelial cell plasticity 

and mobility. Although, recent studies have implicated EV in the pathophysiology of lung 

cancer, a connection to smoking could lead to the discovery of potential biomarkers and novel 

therapeutic interventions [134]. 

 

8.4 Extracellular matrix (ECM) and proteinases 

 

Extracellular matrix (ECM) has important roles in maintaining tissue functionality and stability 

and regulating cell activities. The ECM is organised in two main structural types: 1) basement 

membranes in epithelia and endothelia and 2) interstitial network of fibrous proteins, 

glycosaminoglycans and matricellular proteins that provides structural support for cell types in 

the lung and maintains three-dimensional appearance and biomechanical characteristics [135, 

136]. Key ECM proteins maintaining tissue integrity are for example elastin, collagens and 

specific proteoglycans. The ECM is also an important storage source for different growth 

factors and cytokines, which are crucial for cell differentiation and proliferation [137, 138]. 

One of the major producers and regulators of ECM are fibroblasts, they synthesise large 

amounts of matrix components, different growth factors and inflammatory mediators. 

Fibroblasts may thereby have important modulatory roles in autocrine and paracrine fashions 

in regulating ECM in different lung compartments, and in giving rise to pathological changes 

in the ECM of lung cancers, such as increased collagen expression, altered collagen cross-

linking and subsequent increase in tissue stiffness [136]. SCLC is encircled by an extensive 

stroma of ECM and tumorigenicity has been shown to be enhanced by SCLC cells binding to 

the ECM, creating a highly specific microenvironment [139]. Activated fibroblasts, known as 

cancer-associated fibroblasts (CAFs), play an essential role in tumour progression by 

substantially remodelling tumour ECM, suppressing immune response and releasing tumour 

growth-promoting factors [140]. Thus, the tumour ECM provides a specialised 

microenvironment, favouring proliferation and metastasis and inhibiting apoptosis of tumour 

cells. Encapsulating tumour stroma can confer resistance to chemotherapy [139]. In COPD, 

there are processes ongoing in parallel with excessive ECM being produced manifested as 

peribronchial fibrosis and degraded ECM in the alveoli resulting in emphysema [137]. 

Alterations in elastic fibres, fibronectin, collagens, tenascin-C and versican have been 

identified throughout all lung compartments in patients with moderate COPD [141] and there 

are pronounced alterations in proteoglycan synthesis from central and distally-derived lung 

fibroblasts from patients with severe COPD [142]. Importantly, distal lung fibroblasts from 

severe COPD patients appeared to have altered fibroblast function and defect repair 

mechanisms in the ECM structure of the collagen network assembly in response to the 

prostacyclin analogue iloprost, which may thereby affect emphysema progression [143].  

 

The homeostasis of ECM is tightly regulated by matrix metalloproteinases (MMPs) and 

specific tissue inhibitors of metalloproteinases (TIMPs) [144] [145]. These proteases target the 

ECM for degradation, which alter tissue architecture and cause the release of ECM derived 

chemoattractant signals known as matrikines, which can propagate inflammation [146]. 

MMPs, especially MMP-2 and MMP-9, are implicated in the degradation of ECM in basement 

membranes, which facilitate tumour invasion and metastasis. MMP-2 is expressed in both 



normal and tumour tissues, whereas MMP-9 mostly is induced during tissue remodelling [145]. 

In cancer, MMP-9 overexpression may contribute to stimulate tumor vascularisation and tumor 

cell proliferation [147]. An overproduction of MMPs in intratumoral stromal cells is associated 

with poor prognosis of NSCLC [145, 147]. Interestingly, the proteoglycan decorin, which is 

essential for collagen fibrillogenesis, interacts with MMPs and can act as a tumour suppressor 

by attenuating tumour growth, migration and angiogenesis [148]. In COPD, there is an 

imbalance between MMPs and TIMPs which causes an overproduction of MMPs. Increased 

MMP activity and neutrophil elastases (NE) correlates with COPD pathology and especially 

MMP-9 has a major role in the development of emphysema [149]. The degrading of ECM by 

MMPs may also increase the bioavailability of growth factors, cytokines and receptors stored 

in the ECM.  

 

8.5 Angiogenesis   

 

Smoking, a key factor in both COPD and lung cancer, results in hypoxia, which is an important 

driver of angiogenesis. Nicotine may increase hypoxia-inducible factor (HIF)-1 in NSCLC and 

promote tumour angiogenesis [150, 151]. Vascular endothelial growth factor (VEGF) is one of 

the most important factors promoting angiogenesis and vascular remodeling processes [152]. 

In cancer, tumour progression from a benign to a malignant stage is often related to an 

angiogenic switch – which involves triggering and development of a vascular network that is 

actively growing and infiltrative [153]. As tumors increase in size their microenvironment 

becomes hypoxic and HIF is activated, which induce expression of MMPs and VEGF, leading 

to progression and invasion. VEGF correlates with progression, metastasis and poorer 

prognosis [154]. Proteinases induce the release of growth factors such as TGF-B and VEGF, 

which play a pivotal role in tumorgenesis and metastasis of lung cancer. CAFs have well-

established pro-angiogenic functions in tumours and are together with other hypoxic cancer 

cells major sources of secreted VEGF-A, which initiates tumour angiogenesis through vascular 

endothelial growth factor receptor (VEGFR) 2, expressed on endothelial cells [155]. During 

hypoxic conditions, prostacyclin synthase expression was up-regulated in human lung 

fibroblasts promoting VEGF synthesis in tumours [156]. 

 

Pulmonary vascular remodeling is common in COPD [152] and comorbidities in 

cardiovascular disease have negative impacts on COPD prognosis [157]. In COPD, airflow 

obstructions in small airways and destruction of alveolar capillaries result in decreased oxygen 

transport and alveolar hypoxia. This causes an activation of HIF, which promotes angiogenesis 

via VEGF [158]. Interestingly, VEGF is synthesised in high amounts by distally derived lung 

fibroblasts and induced by both prostacyclin and TGF-B. The synthesised VEGF acted in an 

autocrine fashion by increasing ECM synthesis, migration and proliferation of human lung 

fibroblasts [159]. However, in this study there were not any significant differences in 

synthesised VEGF levels between fibroblasts from non-smoking control subjects and those 

from patients with severe COPD. In line with these findings, expression of VEGF in pulmonary 

arteries did not differ between patients with severe COPD with emphysema and non-smoking 

control subjects, whereas patients with mild-moderate COPD showed an increased expression 

of VEGF [160]. COPD patients with chronic bronchitis had increased levels of VEGF in 

sputum in contrast to COPD patients with more emphysema that showed lower levels of VEGF 

[161]. Patients with acute exacerbations presented high levels of VEGF in the circulation 

compared to stable COPD patients and healthy individuals [162]. Increased VEGF expression 

is associated with bronchial angiogenesis that inversely correlated with lung function in COPD 

patients [163, 164]. In contrast, a decreased expression of VEGFR2 in parenchymal regions in 

severe COPD patients correlated with increased endothelial cell death [165]. Inhibition of 



VEGFR2 in an animal model resulted in emphysematous lung structure and cell apoptosis 

[166]. Interestingly, VEGF may act both as a promoter of endothelial cell function and a 

negative regulator of vascular smooth muscle cells (VSMCs) and vessel maturation in 

combination with platelet derived growth factor [167], highlighting the complex role of VEGF 

in vascular remodelling. Altogether, VEGF may have different roles depending on disease 

progression and disease severity. VEGF has the ability to bind to multiple proteins and 

proteoglycans present in the ECM [168, 169]. The proteoglycan biglycan is important for 

migration of cells [170] and may up regulate VEGF expression [171]. Endothelial cells that 

form vasculature play an important role in providing nutrients and oxygen to the tumour. We 

have previously reported the VEGF and TGF-β1 positive vessels and vessels in general 

increase in the reticular basement membrane (Rbm) of smokers and COPD patients but also 

seen encroaching into the epithelium [172-176]. It is quite possible that these two growth 

factors actively promote neoangiogenesis of the Rbm and epithelium itself supporting 

formation of a pro-cancer stroma with associated active epithelial mesenchymal transition 

(EMT) [173, 177]. In a separate study, we also reported effects on inhaled fluticasone 

propionate on vascular remodelling in COPD patients [177]. In this study, we observed that 

lamina propria vascularity returned to normality after the steroid treatment but the Rbm vessels 

did not decrease significantly after the 6 months of treatment. This also suggested that may be 

for complete depletion of Rbm vessels 6 months of corticosteroid therapy is inadequate, and 

angiogenic sustainability might be the reason for continues cancer growth in smokers and 

COPD patients [178]. We believe these are important clinical observations and warrants further 

investigations.  

 

In NSCLC the degree of tumour associated angiogenesis correlates with disease progression 

and predicts unfavourable survival outcome. High vascularity at tumour periphery has been 

correlated with tumour progression [179]. Perlecan is a major ECM protein located in 

pulmonary vessels, essential for the structure of vascular basement membranes [168, 142] and 

a crucial co-factor for VEGF binding and storage of VEGF [168]. A study on endothelial cell 

function showed that interaction between perlecan and VEGF-A promotes VEGFR2 signalling 

[180]. Down regulation of perlecan caused reduced angiogenesis in vivo [181]. Interestingly, 

perlecan and biglycan synthesis are reduced in fibroblasts from severe COPD patients [142]. 

Furthermore, endothelial-derived angiocrine signals were shown to induce regenerative lung 

alveolarization. Activation of VEGF2 and FGFR1 in pulmonary capillary endothelial cells 

induced MMP14 expression that unmasked EGF receptor ligands to enhance alveologenesis 

[182]. Perlecan, from endothelial cells in a paracrine way blocked proliferation and 

invasiveness of lung cancer by impacting pro-inflammatory pathways [183].  

 

Cyclooxygenase-2 (COX-2) is expressed in many tumours, especially adenocarcinoma, and 

associated with carcinogenesis and tumour resistance to anti-cancer drugs. COX-2 and 

prostaglandins (PGs) may thereby play a role in the pathogenesis of lung cancer via effects on 

angiogenesis, cell proliferation and apoptosis [184]. EGF-induced angiogenesis via the COX-

2 pathway involves p38 and JNK kinase activation pathways in endothelial cells [185]. COX-

2 is increased in the distal lung of COPD patients and increased in sputum of smokers together 

with MMP-2, which correlated with severity of airflow limitations in stable COPD patients 

[186]. COX-2 is also constitutively expressed in different lung cancers including NSCLC [184, 

187]. COX-2 via mPGES-1 and PGE2 receptor EP1 promote cancer growth in a chronic 

inflammatory environment [188]. Activation of PPAR-receptors by nicotine also induces 

expression of  PGE2 receptor EP4 through PI3-K signals and increased human lung carcinoma 

cell proliferation in NSCLC [189]. Interestingly, matrix stiffening and fibrosis appear to be 

linked through COX-2 suppression and reduced PGE2 levels in an autocrine feedback loop 



[190]. Preclinical and clinical studies have shown that COX-2 inhibitor has some efficacy for 

NSCLC [191], however further studies are warranted.  

 

8.6 Genetic predisposition 

 

A role for familial or genetic susceptibility has been suggested in both COPD and lung cancer. 

Genome-wide association studies (GWASs) have identified the same risk loci on chromosome 

15q that map to CHRNA3 and CHRNA5 – both of which are nicotinic acetyl-choline receptors 

that are associated with nicotine dependence and cigarette smoke consumption [192, 193]. The 

linkage of COPD, lung cancer and peripheral vascular disease, with these genes point out their 

possible role – surrogates for tobacco exposure [192]. Single nucleotide polymorphisms 

(SNPs) of other genes such as FAM13A (at 4q24) that encode for a RhoGTPase-activating 

protein binding domain have been associated with both COPD and lung cancer [193]. Although 

its functional contribution to lung cancer and/or COPD remains yet to be elucidated, the 

involvement of Rho GTPases in pulmonary endothelial barrier in lung suggests a potential 

mode of involvement for FAM13A [194]. 

 

8.7 Epigenetics in lung cancer and COPD 

 

Besides genetic susceptibility, epigenetic factors such as DNA methylation and covalent 

histone modifications have been reported to be important in developing COPD and lung cancer. 

A common methylation mark between COPD and lung cancer is that of CDKN2A that encodes 

for tumor suppressors p16 (INK4A) and p14 (ARF) [192], an observation consistent with both 

COPD and lung cancer viewed as ageing diseases [195]. Similarly, DNA methylation of 2 

genes CCDC37 and MAP1B was observed in COPD and lung cancer patients, with the greatest 

degree of methylation observed in patients with both diseases[195]. In cancer patients with 

COPD, immune genes expressed either by tumor cells or by tumor-infiltrating immune cells 

were highly methylated as compared to patients without COPD [196]. Thus, COPD may 

epigenetically alter the immune repertoire. 

 

8.8 Epithelial-Mesenchymal Transition (EMT) 

 

Epithelial-Mesenchymal Transition (EMT) is a biological process by which epithelial cells lose 

cell-cell adhesion and gain mesenchymal traits of migration, invasion, and producing 

components of extracellular matrix (ECM). EMT is a manifestation of airway basal 

reprogramming in smokers and COPD [197]. EMT need not be a binary process, rather cells 

can display a spectrum of phenotypes ranging from fully epithelial to fully mesenchymal [198-

200]. Hallmarks of EMT have been observed in airways of COPD patients and smokers, and 

NSCLC cells can attain partial EMT – i.e. a hybrid epithelial/mesenchymal (E/M) phenotype 

– or a complete EMT phenotype [200]. Thus, EMT has been proposed as a potential link 

between COPD and lung cancer.  

 

We have previously reported that EMT is an active process in both small and large airways of 

COPD patients [201-206]. EMT associated with organ fibrosis is deprived of angiogenesis, 

termed as Type-2 EMT and when it leads to the formation of pro-cancer stroma, it is termed as 

Type-III EMT, which is strongly associated with neo-angiogenesis [207, 99, 208]. We have 

shown that Type-2 EMT is active in small airways leading to small airway fibrosis/obliteration 

and Type-3 EMT is active in large airways, where cancer formation in quite common, 

especially squamous cell carcinomas [209, 210]. We also reported that inhaled fluticasone 

propionate has the potential to ameliorate airway EMT in COPD patients, suggesting EMT as 



a novel therapeutic target in this condition [173, 211, 212]. EMT may be the mechanism 

through which ICS provide protection against lung cancer in COPD, statins might have similar 

effects but more work is needed [178].  

 

Furthermore, EMT in COPD may be activated by interactions among epithelial cells and 

fibroblasts [213], reminiscent of non-cell autonomous regulation of EMT in lung cancer [214]. 

A recent report showed that acute cigarette smoke and associated infections, together plays an 

important role in driving complete EMT; thus an extra insult, such as an infections leads to 

more exaggerated form of EMT leading to chronically remodelled airways as observed during 

COPD [215]. SLUG and ZEB1 – transcription factors often associated with a partial EMT[213, 

216] – were activated in COPD bronchial epithelial cells, potentially enabling cell survival 

[217]. We also recently reported increased expressions of β-catenin, Twist and Snail in airways 

of smokers and COPD [206]. These transcriptional regulators of EMT correlated with markers 

of EMT and were associated with decrease in lung function in both smokers and COPD [206]. 

A partial EMT phenotype can be maintained by adenosine receptor A2BAR that can activate 

both EMT-inducing (ERK/MAPK) and EMT-inhibiting (cAMP/PKA) pathways[218], similar 

to the transcription factor NP63α that can both activate and inhibit ZEB1[219, 220]. 

Intriguingly, a hybrid E/M phenotype has been identified to possess enriched stem-like abilities 

as well as resistance to epidermal growth factor receptor inhibitor erlotinib [221]. The emerging 

notion about the highly aggressive behaviour of a hybrid E/M phenotype in cancer [222, 223] 

[224] argues for a potential role of a partial EMT in driving COPD, in addition to complete 

EMT.  

 

8.9 Endothelial-to-mesenchymal transition (EndoMT)  

 

Similar to epithelial plasticity in EMT, endothelial cells can also lose markers such as vascular 

endothelial cadherin (VE-cadherin) and can attain motile phenotype and express fibroblast 

associated markers such as vimentin, type I collagen, and α-smooth muscle actin (SMA). 

EndoMT is a critical process during embryogenesis, and especially play an important role in 

embryonic cardiac development [225]. However, when challenged by persistent damage and 

inflammation during pathological conditions, EndoMT get initiated and can contribute to  

organ fibrosis [226] and  promote cancer conditions as well [227-229, 226, 230]. Similar to 

EMT, EndoMT can also be a non-binary process, with cells apparently co-expressing both 

endothelial and mesenchymal markers, suggesting a dual role in disease manifestation [231]. 

EndoMT like EMT may be active in both COPD [232] [233] and lung cancer [234, 235]. In 

cancer, it is suggested that activated myofibroblasts and cancer associated fibroblasts (CAFs) 

produced by EndoMT can facilitate tumour growth and cancer progression. This also fits in 

with the underlying cancer pathology wherein tumours are heavily associated with increased 

angiogenesis. Thus, it is very much possible that endothelial cells are contributing to the pool 

of CAFs [227, 236, 230]. EndoMT can also initiate the formation of pro-cancer stroma quite 

similar to Type-3 EMT, so again it has the potential to initiate cancer and at the same time 

could help the tumour to thrive [230].  

 

Others and we have reported vascular remodelling in COPD, main structural changes involve 

intimal and medial thickening, leading to reduction of lumen diameter and muscularization of 

arterioles [237]. The other changes involve hypo-vascular lamina propria and hyper-vascular 

Rbm in large airways of smokers and COPD [238-240, 176, 241].  Both loss of vessels and 

vascular remodelling give rise to pulmonary hypertension in COPD [237, 242]. Interestingly, 

these vascular remodelling changes are also observed in early COPD and in normal lung 

function current smokers [237, 243, 158, 238-240, 176]. Increased expression of FSP-1 has 



been reported in occulated arteries and small vessels [243]. Abnormal deposition of pulmonary 

smooth like cells has been considered as the key pathological feature of arterial remodelling 

[244]. These cells lead to increased production of ECM proteins, with deposition of collagen 

and elastin proteins contributing to narrowing of arterial lumen hence pulmonary hypertension. 

But the origin of these smooth muscle like cells and the underlying mechanisms involved in 

vascular remodelling are poorly understood [244]. It is quite possible again EndoMT is the 

process which actively contributing to this pathology.  

 

EndoMT has been suggested to be involved in angiogenesis, where, during angiogenic 

sprouting, endothelial cells may compromise their basement membrane and migrate together 

as a ‘train’ of cells, indicating a partial EndoMT phenotype [231]. Similar collective migration 

has been observed in cells that are maintained in a partial EMT phenotype by molecular brakes 

such as OVOL2 or GRHL2 that can prevent a complete EMT [245-247][26–28]. Similar 

‘phenotypic stability factors’ for a partial EndoMT state remain to be identified. Computational 

approaches to calculate the rates and trajectories of EndoMT can be valuable in better 

characterizing the dynamics and phenotypic spectrum of EndoMT [248]. Recent studies have 

highlighted that ‘molecular EMT’ and ‘morphological EMT’ need not always occur 

simultaneously, i.e. cells expressing markers of EMT need not always migrate/invade, and cells 

that can invade/migrate need not show molecular markers of EMT[249, 250]. Similar criteria 

can be used to distinguish between ‘molecular EndoMT’ and ‘morphological EndoMT’. Thus, 

further investigations into the functional and morphological aspects of EndoMT shall yield 

better insights into the contribution of EndoMT in COPD and cancer progression. 

 

9. Insights from mouse models of COPD 

 
Animal models of CS-induced disease have been developed and have used guinea pigs, rats 

and mice [251, 252]. Mice are the most popular because of cost, ease of housing, and the 

availability of a plethora of molecular and immunological reagents and genetically modified 

strains [252-254]. Mouse models can be used to assess the impact of short-term CS exposure 

(1 day to 4 weeks) or the mechanisms involved in the development of COPD (up to 6 months). 

Many of the characteristic features of human COPD, such as chronic lung inflammation, 

pulmonary hypertension, airway remodelling, emphysema, and impaired lung function, can be 

generated in CS exposed mice [255-258, 252-254, 259-264]. The effects of CS also predispose 

to epithelial to mesenchymal transition (EMT) that contributes to the progression lung cancer 

[209, 265].  

 

In one model, mice were exposed to side-stream CS for 36 weeks that induced various 

hallmarks of human COPD, including increased airway resistance and respiratory system 

elastance [266]. However, this is a long model and shorter models that have the hallmark 

features of disease enable rapid progression of research, our understanding of COPD 

pathogenesis and aid in development of new treatments. Recently we developed a short-term 

mouse model of CS-induced experimental COPD, using nose-only exposure that develops the 

major features of the human disease in 8 weeks [252, 267, 253, 259]. Mice are exposed to the 

smoke of 12 cigarettes for 75 minutes, twice per day for 5 days per week [268]. The CS consists 

of normal air interspersed with puffs of CS and is representative of a pack-a-day smoker. This 

regimen results in acute and chronic airway and parenchymal inflammation, goblet cell 

metaplasia, airway remodelling, emphysema and impaired lung function [252, 259, 267, 253, 

254]. Like in humans, features are not suppressed by corticosteroid treatment and do not 

resolve over time, mice with experimental COPD are more susceptible to viral (influenza) and 



bacterial (Streptococcus pneumoniae) infections, and have systemic involvement with skeletal 

muscle loss, and effects on the gut and reproductive tract [269, 270, 252, 263].  

 

Current treatments for COPD such as corticosteroids and bronchodilators are poorly effective 

at inhibiting chronic inflammation, and do not reverse pathology. Thus, it is clear that there is 

an urgent need to develop new therapies to prevent the initiation and the progression of COPD, 

and an effective option is through the use of animal models that accurately reflect the 

physiopathology of the disease. Indeed, many potential future COPD therapeutics currently in 

clinical development, such as inhibitors of inflammatory mediators, oxidative stress, kinases, 

phosphodiesterases (PDE) and proteinases, were originally identified in studies using animal 

models. 

 

Various inhibitors of inflammatory mediators are being developed and tested for the treatment 

of COPD. Inhibitors of TRAIL, leukotriene B4 (LTB4), TNF-α, IL-1, IL-8, and epidermal 

growth factor have shown strong beneficial effects when used in animal models, however the 

translation into the clinic has been slow [271]. Studies exposing TNF-α receptor deficient mice 

to CS resulted in reduced inflammatory cells in lavage fluid and attenuated alveolar 

enlargement compared to wild-type mice [272]. These findings were supported by another 

knockout mouse study where both TNF-α receptors were shown to contribute to the 

pathogenesis of murine COPD, with TNF-α receptor-2 being the most active in the 

development of systemic weight loss, inflammation and emphysema [273]. However, as 

occurred with asthma, where mouse studies were not interpreted properly or transferred 

effectively into clinical studies, it is likely that selected groups or phenotypes of patients may 

respond better to specific treatments [274].  

 

Anti-oxidants, particularly those that target specific processes in COPD have shown some 

promise. Resveratrol and the antioxidant enzyme Gpx-1 have been shown to protect against 

lung inflammation and CS-induced emphysema in mice, and a Gpx mimetic also reduced lung 

inflammation when administered both prophylactically and therapeutically [275, 276]. 

Resveratrol is a plant originated polyphenol that suppresses lung inflammation through 

upregulating MyD88s which is a negative regulator of inflammation [276].  

 

Studies of animal models of CS-induced airway inflammation support the potential therapeutic 

use of kinase inhibitors, such as those that inhibit p38 mitogen-activated protein kinase (MAPK) 

and phosphatidylinositol 3-kinase (PI3K), in COPD [277]. MAPKs plays key roles in chronic 

inflammation [278], and the p38 MAPK pathway is activated by cellular stress and regulates 

the expression of a wide variety of inflammatory cytokines and remodeling factors including 

IL-8, TNF-α and MMPs [279]. PI3Ks play roles in controlling a wide variety of intracellular 

signaling pathways in asthma and COPD [280, 259]. Recent studies suggest that numerous 

components of the PI3K pathway contribute to the expression and activation of inflammatory 

mediators, inflammatory cell recruitment, immune cell function and airway remodeling as well 

as corticosteroid insensitivity in chronic inflammatory respiratory diseases such as asthma [281, 

280, 259]. We recently discovered that PI3K also plays a pivotal role in the pathogenesis of 

COPD as it’s activity is increased and it is utilised by influenza viruses during infection and it 

suppresses anti-viral responses [282, 259].  

 

The PDE4 inhibitor roflumilast, a licensed treatment for severe COPD, was originally 

identified as a potential therapeutic in acute and chronic murine models of CS-exposure [283]. 

PDE4 degrades the anti-inflammatory cyclic adenosine monophosphate and its inhibition in 

mice has been shown to have protective effects including reversing the loss of lung desmosine, 



a breakdown product of elastin, reducing neutrophil and macrophage influx, increasing the 

anti-inflammatory cytokine IL-10, and improving emphysema [283]. Other murine studies 

show that another PDE4 inhibitor rolipram had little effect on airway inflammation and 

remodeling or emphysema whereas a semicardazide-sensitive mono-amine oxidase inhibitor 

did [264]. 

 

Serine-, metallo- and cysteine proteinases are the primary proteinases implicated in the 

development of COPD [284]. In studies aimed at preventing the destruction of alveolar walls 

by proteolysis, and ultimately the development of emphysema, inhibitors of various proteinases 

have been trialed in animal models with varying levels of success. Emerging studies are also 

using mouse models to elucidate the roles of other new areas such as inflammasomes, 

microbiomes and the gut lung axis [285-289]. Collectively, the use of murine models of COPD 

and infectious exacerbations is valuable in furthering our understanding of the pathogenic 

aspects of the disease and can be used to identify novel therapeutic targets and develop and test 

new therapies [290]. The inherent heterogeneity of the disease can also be reproduced and 

studied in animal models using different combinations or doses of induction agents. 

 

 

10. Insights from mouse models of lung cancer  

 

Numerous different mouse models have been developed to study the etiology, transformation, 

invasion and metastasis of lung cancer. These models have been used to elucidate the 

mechanisms of cancer initiation, progression and metastasis, and to discover biomarkers, and 

testing preventions and treatments. Different types of mouse models of lung cancer have been 

developed with the vast majority using immunodeficient or genetically modified mice.  

 

Xenograft models are induced by injecting human lung cancer cells subcutaneously, 

orthotopically or systematically into immunocompromised mice. These models are mainly 

used to assess the efficacy of drugs before proceeding to clinical trials. Cell lines commonly 

used in xenograft mouse models are HCC4006, HCC827, H1975 and A549 for 

adenocarcinomas [291-293]; NCI-H1299 for carcinomas [294]; NCI-H460 for large cell 

carcinomas [295]; and NCI-H226 for squamous cell carcinomaa [296]. Another type is termed 

the patient derived xenograft (PDX) mouse model where surgically removed human primary 

tumour tissues are grafted into mice subcutaneously or orthotopically. These models are used 

to develop and test personalised therapies [297]. Although xenograft models are relatively poor 

in predicting clinical efficacy of drugs, these models have been successfully used for 

developing personalised therapy [298].  Circulating tumour cells (CTCs) derived explants 

(CDXs) of SCLC were used to develop personalised therapy using platinum and etoposide 

chemotherapy that showed similar drug response to patients [299]. Apart from this, xenografts 

models were also showed accuracy in testing the efficacy of a number of drugs like gefitinib, 

erlotinib and crizotinib which showed similar results in clinical trials [300-305]. 

 

Transgenic mouse models are generated by microinjecting modified DNA into zygotes, and 

are used to explore the functional activity of the gene of interest particularly their impact on 

the initiation, progression and metastasis of lung cancer [306]. A lung specific promoter is 

added to the coding region of the target gene in modified DNA to enable its expression only in 

the lung, and not in other organs or tissues [306]. A transgenic mouse model was developed to 

test the dependency of EGFR signalling in tumour development and progression. This model 

also showed that inhibiting EGFR through small molecular inhibitors (erlotinib or HKI-272) 



and humanized anti-hEGFR antibody (cetuximab) was effective in inducing tumor regression 

[307]. 

 

Syngeneic mouse models are generated by injecting immunologically compatible cancer cells 

into immunocompetent mice. The use of these models in  the study of lung cancer is rare and 

the only mouse model developed so far is the Lewis lung carcinoma model [308]. This model 

is valuable for investigating the tumour microenvironment and exploring the immune and 

toxicological responses of potential drugs. Spontaneous models are induced using oral, 

intraperitoneal or topical application of carcinogens to genetically susceptible but wild-type 

mouse strains like A/J and SWR. Carcinogens used are cigarette smoke, 4-methylnitrosamino-

3-pyridyl-1-butanone (NNK), benzo(a)pyrene for adenocarcinomas [309, 310], and N-nitroso-

tris-chloroethyl urea (NTCU) for squamous cell carcinomas [311]. Small cell lung cancer 

(SCLC) is induced through inactivation of both Rb and p53 genes. These models are valuable 

for exploring carcinogenesis, disease pathology, biomarker discovery, tumour 

microenvironment and roles of immune cells in cancer initiation development and progression, 

immune responses and the efficacy and toxicological of drug treatment [312].  

 

Carcinogens such as cigarette smoke and NNK, can be combined to induce adenomas and 

eventually after many months adenocarcinomas and the published models are long term 5-9 

months [313, 310, 314]. Initially, hyperplastic foci are seen in the bronchioles and alveoli that 

develop as adenomas and then progress to adenocarcinomas [315]. It is often difficult to 

distinguish adenomas, premalignant adenomas and malignant adenocarcinomas. 

Adenocarcinomas are mostly distinguished from other tumours based on certain characteristics 

like large pleiomorphic cells with vesicular nuclei, prominent nucleoli, undifferentiated 

cytoplasm and high mitotic index [316]. They are morphologically have both solid and 

papillary characteristics [317]. Tumours that develop in mice have low vascularization and 

metastatic potential [313]. Clara cells, alveolar type II cells, multipotent stem cells or derivative 

lineages of these cells are usually the cells of origin of tumours [317, 318]. The origin of 

papillary tumours is unclear, however, solid tumours usually originate from alveolar type II 

cells [317]. The histopathological and molecular characteristics of spontaneous mouse lung 

adenocarcinoma models are similar to the tumours that develop in humans [316].  

 

Squamous cell carcinoma (SCC) mouse models can be induced using NTCU administration 

and initially show premalignant lesions which progress to frank lung SSC that are similar to 

those that develop in humans [319]. SCLCs in mice are histologically similar and also 

metastasize to similar organs as in humans [320]. Neuroendocrine cells are believed to be the 

origin of SCLC [321].  

 

Although mice are genetically distinct and have some differences in lung physiology compared 

to humans, non-immunocompromised, non-genetically-modified spontaneous mouse models 

are more accurate in predicting clinical efficacy of investigating drugs [298]. NNK carcinogen- 

and CS-induced adenocarcinoma models in A/J mice were successfully used to show efficacy 

of different chemopreventive agents like isothiocyanates and their conjugates, glucocorticoids, 

green tea and non-steroidal anti-inflammatory drugs (NSAIDs) [322, 323]. Further 

characterisation of lung cancer mouse models and the development of novel models that 

accurately recapitulate the histological, immunological and molecular characteristics of human 

tumours are needed to advance our understanding of lung cancer and to discover more effective 

early diagnostics and treatment.      

 

 



11. Conclusions  

 
Currently, there is a lack of strong evidence to suggest that medical management for COPD 

should be modified in patients with concomitant lung cancer. Given both COPD and lung 

cancer are heterogeneous conditions, individualised treatment strategies are needed for patient 

management. Optimisation of care for COPD prior to, during and after definitive treatment for 

lung cancer should be part of the multidisciplinary management of patients with these dual 

pathologies. The use of long-acting bronchodilators and pulmonary rehabilitation are the 

mainstay management for these patients. Addition of inhaled corticosteroids is appropriate for 

patients with moderate-to-severe COPD and recurrent exacerbations. It becomes especially 

important given the fact that inhaled corticosteroid has potential to ameliorate EMT in COPD 

patients. EMT might be the process through which steroids protect lung cancer in COPD. 

However, steroids have been reserved for more severe form of COPD, so there is essential need 

for new therapeutics, which could be given in early disease state as 70% of lung cancer occurs 

in earlier stages of COPD. Therapeutic options available for patients with lung cancer and 

concomitant COPD improve with advances in radiotherapy such as IMRT and SABR, as well 

as systemic therapies such as TKI and immunotherapy. However, pneumonitis secondary to 

radiotherapy or systemic therapies is a potential significant side effect in patients with pre-

existing lung disease. At present, it is unknown whether COPD or its therapies may impact on 

the development or clinical course of therapy-related lung toxicity. Well-controlled clinical 

trials are needed to explore the efficacy of various strategies for reducing lung cancer risk in 

patients with COPD and improving clinical outcomes for patients with both diseases. There is 

essential need for development of pre-clinical animal models, which represents truly human 

disease. With increasing understanding of the molecular pathogenesis for lung cancer and 

COPD, new strategies using molecularly targeted therapies may be developed in future for 

prevention of lung cancer and treatment of COPD in this population.  
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Table 1: Observation studies of inhaled corticosteroids and risk of lung cancers in 

patients with COPD 

 

 Design (duration) Number of 

participants 

Type of ICS  Hazard ratio  

[95% CI] 

Parimon 

2007 

Retrospective 

cohort study 

(Median 3.8 years) 

ICS = 517 

No ICS = 

9957 

Triamcinolone, 

beclomethasone, 

flunisolide, 

fluticasone 

Adjusted: 

ICS < 1200μg = 1.3 (0.67-

1.90) 

ICS ≥ 1200μg = 0.39 

(0.16-0.96) 

Kiri 

2009 

Retrospective 

nested case-

control study  

(1989-2003 to 

June 2005) 

ICS = 127 

No ICS = 

1470 

Any ICS Overall = 0.64 (0.42-0.98) 

1-2 prescriptions/year = 

0.88 (0.51-1.52) 

3+ prescriptions/year  

= 0.51 (0.30-0.84)  

Liu 

2017 

Retrospective 

cohort study 

(Median 9.8 years) 

ICS = 1290 

No ICS = 

12396 

Fluticasone, 

Budesonide 

Overall = 0.70 (0.46-1.09) 

Cumulative ICS dose > 

39.48mg = 0.45 (0.21-

0.96) 
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