379 research outputs found

    Fluids in cosmology

    Full text link
    We review the role of fluids in cosmology by first introducing them in General Relativity and then by applying them to a FRW Universe's model. We describe how relativistic and non-relativistic components evolve in the background dynamics. We also introduce scalar fields to show that they are able to yield an inflationary dynamics at very early times (inflation) and late times (quintessence). Then, we proceed to study the thermodynamical properties of the fluids and, lastly, its perturbed kinematics. We make emphasis in the constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book "Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment". Version 2: typos corrected and references expande

    An RxLR effector from phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus

    Get PDF
    The plant immune system is activated following the perception of exposed, essential and invariant microbial molecules that are recognised as non-self. A major component of plant immunity is the transcriptional induction of genes involved in a wide array of defence responses. In turn, adapted pathogens deliver effector proteins that act either inside or outside plant cells to manipulate host processes, often through their direct action on plant protein targets. To date, few effectors have been shown to directly manipulate transcriptional regulators of plant defence. Moreover, little is known generally about the modes of action of effectors from filamentous (fungal and oomycete) plant pathogens. We describe an effector, called Pi03192, from the late blight pathogen Phytophthora infestans, which interacts with a pair of host transcription factors at the endoplasmic reticulum (ER) inside plant cells. We show that these transcription factors are released from the ER to enter the nucleus, following pathogen perception, and are important in restricting disease. Pi03192 prevents the plant transcription factors from accumulating in the host nucleus, revealing a novel means of enhancing host susceptibility

    Intuitive and Informal Knowledge in Preschoolers’ Development of Probabilistic Thinking

    Get PDF
    Preschoolers develop a wide range of mathematical informal knowledge and intuitive thinking before they enter formal, goal-oriented education. In their everyday activities young children get engaged with situations that enhance them to develop skills, concepts, strategies, representations, attitudes, constructs and operations concerning a wide range of mathematical notions. Recently there is scientific interest in linking children’s informal and formal knowledge in order to provide them with opportunities to avoid biases aiming at formulating, perceiving, reflecting on and exercising probabilistic notions. The current study investigates preschoolers’ (N=90) intuitive understanding of the likelihood of events in a probabilistic task with spinners. Participants, at the age of 4 to 6, are tested on their predictions of the most probable outcome prior to and after an instructive session of reasoning. The probabilistic task, based on constructivist principles, includes methodological alterations concerning the sample space and the themes of the stimuli. Educational implications are further discussed under the general point of view that in order to link informal to formal mathematical learning in preschool classroom, the subject content and the cognitive capacity of children are important to match

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Non-solvolytic synthesis of aqueous soluble TiO2 nanoparticles and real-time dynamic measurements of the nanoparticle formation.

    Get PDF
    Highly aqueously dispersible (soluble) TiO2 nanoparticles are usually synthesized by a solution-based sol-gel (solvolysis/condensation) process, and no direct precipitation of titania has been reported. This paper proposes a new approach to synthesize stable TiO2 nanoparticles by a non-solvolytic method - direct liquid phase precipitation at room temperature. Ligand-capped TiO2 nanoparticles are more readily solubilized compared to uncapped TiO2 nanoparticles, and these capped materials show distinct optical absorbance/emission behaviors. The influence of ligands, way of reactant feeding, and post-treatment on the shape, size, crystalline structure, and surface chemistry of the TiO2 nanoparticles has been thoroughly investigated by the combined use of X-ray diffraction, transmission electron microscopy, UV-visible (UV-vis) spectroscopy, and photoluminescence (PL). It is found that all above variables have significant effects on the size, shape, and dispersivity of the final TiO2 nanoparticles. For the first time, real-time UV-vis spectroscopy and PL are used to dynamically detect the formation and growth of TiO2 nanoparticles in solution. These real-time measurements show that the precipitation process begins to nucleate after an initial inhibition period of about 1 h, thereafter a particle growth occurs and reaches the maximum point after 2 h. The synthesis reaction is essentially completed after 4 h.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications

    Get PDF
    A systematic study was conducted into the use of metal-assisted chemical etching (MacEtch) to fabricate vertical Si microwire arrays, with several models being studied for the efficient redox reaction of reactants with silicon through a metal catalyst by varying such parameters as the thickness and morphology of the metal film. By optimizing the MacEtch conditions, high-quality vertical Si microwires were successfully fabricated with lengths of up to 23.2 mu m, which, when applied in a solar cell, achieved a conversion efficiency of up to 13.0%. These solar cells also exhibited an open-circuit voltage of 547.7 mV, a short-circuit current density of 33.2 mA/cm(2), and a fill factor of 71.3% by virtue of the enhanced light absorption and effective carrier collection provided by the Si microwires. The use of MacEtch to fabricate high-quality Si microwires therefore presents a unique opportunity to develop cost-effective and highly efficient solar cells.open1

    Clinical and genetic analyses of three Korean families with hereditary hemorrhagic telangiectasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant vascular disorder, characterized by recurrent epistaxis, mucocutaneous telangiectases, and arteriovenous malformations (AVMs) in various visceral organs. Endoglin (<it>ENG</it>) and activin receptor-like kinase 1 (<it>ACVRL1; ALK1</it>), receptors for transforming growth factor-β (TGF-β) superfamily, have been identified as the principal HHT-causing genes.</p> <p>Methods</p> <p>Three unrelated Korean HHT patients and their asymptomatic as well as symptomatic family members were genetically diagnosed by sequencing whole exons and their flanking regions of <it>ENG </it>and <it>ACVRL1</it>. Functionality of an aberrant translation start codon, which is created by a substitution mutation at the 5'-untranslated region (UTR) of <it>ENG </it>found in a HHT family, was tested by transient <it>in vitro </it>transfection assay. Decay of the mutant transcripts was also assessed by allele-specific expression analysis.</p> <p>Results</p> <p>Two <it>ENG </it>and one <it>ACVRL1 </it>mutations were identified: a known <it>ENG </it>mutation (c.360+1G > A; p.Gly74_Tyr120del); a novel <it>ENG </it>mutation (c.1-127C > T); and a novel <it>ACVRL1 </it>mutation (c.252_253insC; p.Val85fsX168). We further validated that the 5'-UTR <it>ENG </it>mutation prevents translation of ENG from the biological translation initiation site of the mutant allele, and leads to degradation of the mutant transcripts.</p> <p>Conclusions</p> <p>This is the first experimental demonstration that a 5'-UTR mutation can prevent translation of ENG among HHT patients, and further supports the previous notion that haploinsufficiency is the primary mechanism of HHT1. Our data also underscore the importance of including exons encoding 5' UTR for HHT mutation screening.</p

    Analysis of Microsatellite Variation in Drosophila melanogaster with Population-Scale Genome Sequencing

    Get PDF
    Genome sequencing technologies promise to revolutionize our understanding of genetics, evolution, and disease by making it feasible to survey a broad spectrum of sequence variation on a population scale. However, this potential can only be realized to the extent that methods for extracting and interpreting distinct forms of variation can be established. The error profiles and read length limitations of early versions of next-generation sequencing technologies rendered them ineffective for some sequence variant types, particularly microsatellites and other tandem repeats, and fostered the general misconception that such variants are inherently inaccessible to these platforms. At the same time, tandem repeats have emerged as important sources of functional variation. Tandem repeats are often located in and around genes, and frequent mutations in their lengths exert quantitative effects on gene function and phenotype, rapidly degrading linkage disequilibrium between markers and traits. Sensitive identification of these variants in large-scale next-gen sequencing efforts will enable more comprehensive association studies capable of revealing previously invisible associations. We present a population-scale analysis of microsatellite repeats using whole-genome data from 158 inbred isolates from the Drosophila Genetics Reference Panel, a collection of over 200 extensively phenotypically characterized isolates from a single natural population, to uncover processes underlying repeat mutation and to enable associations with behavioral, morphological, and life-history traits. Analysis of repeat variation from next-generation sequence data will also enhance studies of genome stability and neurodegenerative diseases
    corecore