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Abstract
LetM be a complete minimal hypersurface in hyperbolic spaceHn+1(–1) with
constant sectional curvature –1. We prove that ifM has a finite index and finite L2

norm of the second fundamental form, then the fundamental tone λ1(M) is bounded
above by n2.
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1 Introduction
McKean [] proved that the fundamental tone of an n-dimensional complete simply con-
nected Riemannian manifold M with sectional curvature bounded above by –κ <  is
bigger than or equal to (n–)κ

 , where κ is a real number. Moreover, his result is sharp
since the equality is attained by the hyperbolic space Hn(–κ) with constant sectional cur-
vature –κ. We recall that the fundamental tone λ(M) is defined by

λ(M) = inf

{∫
M |∇f |∫

M f  :  �= f ∈ W ,
 (M)

}
.

Interestingly, Cheung and Leung [] obtained the same lower bound for the fundamental
tone of complete submanifold in H

m(–κ) with bounded mean curvature as follows (see
also [, ]).

Theorem [] Let M be an n-dimensional complete noncompact submanifold in H
m(–κ)

with the mean curvature vector H . If |H| ≤ α < n – , then

λ(M) ≥ (n –  – α)κ


.

There have been extensive investigations to obtain an upper bound for the fundamental
tone of complete minimal submanifolds in hyperbolic space. Castillon [] proved that the
spectrum of the Laplacian on a complete minimal hypersurface with finite Ln norm of the
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second fundamental form in H
n+, denoted by Spec(�), is given by Spec(�) = [ (n–)

 , +∞).
Candel [] was able to prove that the fundamental tone of complete simply connected sta-
ble minimal surfaces inH

(–) is at most 
 . In [], the author proved that if M is a complete

stable minimal hypersurface in H
n+(–) with finite L norm of the second fundamental

form, then (n–)

 ≤ λ(M) ≤ n. Later, Bérard et al. [] improved the upper bound for com-
plete stable minimal surfaces in H

(–). Indeed, they proved that the fundamental tone of
complete stable minimal surfaces in H

(–) is at most 
 . Fu and Tao [] showed that if M

is an n-dimensional complete submanifold in H
m(–) with parallel mean curvature vec-

tor H and with finite Lp norm of the traceless second fundamental form for p ≥ n, then
λ(M) is less than or equal to (n–)(–|H|)

 . Recently, Gimeno [] proved that if M is a
complete minimal surface in H

m(–) with finite L norm of the second fundamental form,
then λ(M) = 

 .
The aim of this paper is to obtain an upper bound for the fundamental tone of complete

minimal hypersurfaces in H
n+(–) with finite index and finite L norm of the second fun-

damental form. More precisely, we prove the following.

Theorem . Let M be a complete orientable minimal hypersurface in H
n+(–) with∫

M |A| < ∞. Suppose M has finite index. Then we have

(n – )


≤ λ(M) ≤ n.

It is obvious that a complete stable minimal hypersurface in H
n+(–) has index . Hence

our theorem can be regarded as an extension of the results in [–]. When n = , we re-
mark that the finite index condition can be omitted, since the finiteness of the L norm
of the second fundamental form implies that M has finite index, which was proved by
Bérard et al. []. However, in this case, our theorem is weaker than Theorem . in [] or
Theorem A in [].

2 Proof of Theorem 1.1
In this section, we prove our main theorem.

Proof of Theorem . The lower bound of λ(M) is given by (n–)

 , which was done by
Cheung and Leung [] as mentioned in the Introduction. Thus it suffices to prove that the
upper bound of λ(M) is n.

Since M has a finite index, there exists a compact subset K ⊂ M such that M \K is stable
(see [] for example), i.e., for any compactly supported Lipschitz function f on M \ K ,

∫
M\K

|∇f | –
(|A| – n

)
f  dv ≥ , ()

where |A| denotes the squared length of the second fundamental form on M and dv de-
notes the volume form for the induced metric on M. Note that, for some geodesic ball
B(R) ⊂ M centered at p ∈ M of radius R containing the compact set K , the region
M \ B(R) is still stable. Thus, without loss of generality, we may assume that K = B(R).
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Choose a geodesic ball B(R) ⊂ M centered at p ∈ M of radius R > R and take a cut-off
function  ≤ φ ≤  on M satisfying

φ =

⎧⎪⎪⎨
⎪⎪⎩

 on B(R),

 on B(R + R) \ B(R + R),

 on M \ B(R + R),

and |∇φ| ≤ 
R on M. By the definition of the fundamental tone and the domain mono-

tonicity of the eigenvalue, we see that

λ(M) ≤ λ
(
M \ B(R)

) ≤
∫

M\B(R) |∇f |∫
M\B(R) f 

for any f ∈ W ,
 (M \ B(R)). Substituting f with |A|φ gives

λ(M)
∫

M\B(R)
|A|φ

≤
∫

M\B(R)

∣∣∇(|A|φ)∣∣

=
∫

M\B(R)
φ∣∣∇|A|∣∣ +

∫
M\B(R)

|A||∇φ| + 
∫

M\B(R)
|A|φ〈∇|A|,∇φ

〉
.

Using the Schwarz inequality and the geometric-arithmetic mean inequality, we get


∫

M\B(R)
|A|φ〈∇|A|,∇φ

〉 ≤ ε

∫
M\B(R)

|A||∇φ| +

ε

∫
M\B(R)

φ∣∣∇|A|∣∣

for any ε > . Therefore

λ(M)
∫

M\B(R)
|A|φ ≤ ( + ε)

∫
M\B(R)

|A||∇φ|

+
(

 +

ε

)∫
M\B(R)

φ∣∣∇|A|∣∣. ()

On the other hand, a Simons-type inequality [, ] for minimal hypersurfaces in H
n+

asserts that

|A|�|A| + |A| + n|A| = |∇A| –
∣∣∇|A|∣∣.

Applying the Kato inequality [],

|∇A| –
∣∣∇|A|∣∣ ≥ 

n
∣∣∇|A|∣∣,

we have

|A|�|A| + |A| + n|A| ≥ 
n

∣∣∇|A|∣∣.
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Multiplying both sides by the function φ and integrating over B(R + R) \ B(R), we get


n

∫
M\B(R)

φ∣∣∇|A|∣∣ ≤
∫

M\B(R)
φ|A| + n

∫
M\B(R)

φ|A|

–
∫

M\B(R)
φ∣∣∇|A|∣∣ – 

∫
M\B(R)

|A|φ〈∇|A|,∇φ
〉
, ()

where we used the divergence theorem.
Replacing f with φ|A| in the stability inequality () on M \ B(R) gives

∫
M\B(R)

∣∣∇(
φ|A|)∣∣ ≥

∫
M\B(R)

(|A| – n
)|A|φ,

which implies

∫
M\B(R)

|A||∇φ| +
∫

M\B(R)
φ∣∣∇|A|∣∣ + 

∫
M\B(R)

|A|φ〈∇|A|,∇φ
〉

≥
∫

M\B(R)
|A|φ – n

∫
M\B(R)

|A|φ. ()

Combining () with (), we obtain


n

∫
M\B(R)

φ∣∣∇|A|∣∣ ≤
∫

M\B(R)
|A||∇φ| + n

∫
M\B(R)

|A|φ. ()

Hence, using () and (), we have


{


n

–
n( + 

ε
)

λ(M)

}∫
M\B(R)

φ∣∣∇|A|∣∣ ≤
{

 +
n( + ε)
λ(M)

}∫
M\B(R)

|A||∇φ|. ()

We now suppose that λ(M) > n. For a sufficiently large ε > , letting R → ∞ in () shows
that |∇|A|| ≡  on M \ B(R), which implies that |A| is constant on M \ B(R). Since the
volume of any complete minimal hypersurface in hyperbolic space is infinite and L norm
of |A| is finite by our assumption, we see that |A| ≡  outside the compact subset B(R).
It follows from the maximum principle for minimal hypersurfaces in H

n+ that M must
be totally geodesic. However, due to McKean [], the fundamental tone of totally geodesic
hyperplanes in H

n+ is equal to (n–)

 , which gives a contradiction. Therefore we get the
conclusion. �

Remark . The proof of Theorem . relies on the inequality (), which is called a
Caccioppoli-type inequality. In [], Ilias et al. intensively studied a Caccioppoli-type in-
equality on constant mean curvature hypersurfaces in Riemannian manifolds.
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