441 research outputs found
Effects of proanthocyanidin-functionalized hydroxyapatite nanoparticles on dentin bonding
Objectives To evaluate the effect of proanthocyanidin-functionalized hydroxyapatite nanoparticles (nHAp_PA) used as pretreatment at different concentrations on the microtensile bond strength (mu TBS) and endogenous enzymatic activity (MMPs) on pH-cycled dentin after 24 h and 6 months of artificial aging. Materials and methods Fifty human sound dentin blocks were randomly assigned to 5 groups (n = 10): (i) negative control (no treatment); (ii) positive control (pH-cycling); (iii) pH-cycling + 2% nHAp_PA for 60s; (iv) pH-cycling + 6.5% nHAp_PA for 60s; (v) pH-cycling + 15% nHAp_PA for 60s. A self-etch adhesive was used for bonding procedures before resin composite build-ups. Specimens were tested with the mu TBS test after 24 h and 6 months of laboratory storage. The proteolytic activity in each group was evaluated with gelatin zymography and in situ zymography. Data were statistically analyzed (p < 0.05). Results At 24 h, the TBS of the experimental groups were significantly higher than the controls (p <= 0.001), and no differences were observed between different concentrations (p > 0.05). Artificial aging significantly decreased bond strength in all groups (p <= 0.008); however, nHAp_PA 2% still yielded higher bonding values than controls (p <= 0.007). The groups pretreated with nHAp_PA exhibited lower MMP-9 and MMP-2 activities compared to the positive control group and almost the same enzymatic activity as the negative control group. In situ zymography showed that after 6 months of aging, nHAp_PA 2% and nHAp_PA 6,5% decreased enzymatic activity as well as the negative control. Conclusions Dentin pretreatment with nHAp_PA increased the bonding performance of a self-etch adhesive and decreased MMP-2 and MMP-9 activities after 6 months
Performance and first measurements of the MAGIC stellar intensity interferometer
In recent years, a new generation of optical intensity interferometers has emerged, leveraging the existing infrastructure of Imaging Atmospheric Cherenkov Telescopes (IACTs). The MAGIC telescopes host the MAGIC-SII system (Stellar Intensity Interferometer), implemented to investigate the feasibility and potential of this technique on IACTs. After the first successful measurements in 2019, the system was upgraded and now features a real-time, dead-time-free, 4-channel, GPU-based correlator. These hardware modifications allow seamless transitions between MAGICâs standard very-high-energy gamma-ray observations and optical interferometry measurements within seconds. We establish the feasibility and potential of employing IACTs as competitive optical Intensity Interferometers with minimal hardware adjustments. The measurement of a total of 22 stellar diameters are reported, 9 corresponding to reference stars with previous comparable measurements, and 13 with no prior measurements. A prospective implementation involving telescopes from the forthcoming Cherenkov Telescope Array Observatoryâs Northern hemisphere array, such as the first prototype of its Large-Sized Telescopes, LST-1, is technically viable. This integration would significantly enhance the sensitivity of the current system and broaden the UV-plane coverage. This advancement would enable the system to achieve competitive sensitivity with the current generation of long-baseline optical interferometers over blue wavelengths
A detailed study of the very-high-energy Crab pulsar emission with the LST-1
Context: There are currently three pulsars firmly detected by imaging atmospheric Cherenkov telescopes (IACTs), two of them reaching TeV energies, challenging models of very-high-energy (VHE) emission in pulsars. More precise observations are needed to better characterize pulsar emission at these energies. The LST-1 is the prototype of the Large-Sized Telescope, that will be part of the Cherenkov Telescope Array Observatory (CTAO). Its improved performance over previous IACTs makes it well suited for studying pulsars. Aims: To study the Crab pulsar emission with the LST-1, improving and complementing the results from other telescopes. These observations can also be used to characterize the potential of the LST-1 to study other pulsars and detect new ones. Methods: We analyzed a total of 103 hours of gamma-ray observations of the Crab pulsar conducted with the LST-1 in the period from September 2020 to January 2023. The observations were carried out at zenith angles less than 50 degrees. A new analysis of the Fermi-LAT data was also performed, including 14 years of observations. Results: The Crab pulsar phaseogram, long-term light-curve, and phase-resolved spectra are reconstructed with the LST-1 from 20 GeV to 450 GeV for P1 and up to 700 GeV for P2. The pulsed emission is detected with a significance of 15.2. The two characteristic emission peaks of the Crab pulsar are clearly detected (>10), as well as the so-called bridge emission (5.7). We find that both peaks are well described by power laws, with spectral indices of 3.44 and 3.03 respectively. The joint analysis of Fermi-LAT and LST-1 data shows a good agreement between both instruments in the overlapping energy range. The detailed results obtained in the first observations of the Crab pulsar with LST-1 show the potential that CTAO will have to study this type of sources
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Coherent psi (2S) photo-production in ultra-peripheral Pb-Pb collisions at root s(NN)=2.76TeV
We have performed the first measurement of the coherent psi(2S) photo-production cross section in ultraperipheral Pb-Pb collisions at the LHC. This charmonium excited state is reconstructed via the psi(2S) -> l(+)l(-) and ->(2S) -> J/psi pi(+)pi(-) decays, where the J/psi decays into two leptons. The analysis is based on an event sample corresponding to an integrated luminosity of about 22 mu b(-1). The cross section for coherent psi(2S) production in the rapidity interval -0.9 <y <0.9is d sigma(coh)(psi(2S))/dy = 0.83 +/- 0.19 (stat+syst) mb. The psi(2S) to J/psi coherent cross section ratio is 0.34(-0.07)(+0.08)(stat+syst). The obtained results are compared to predictions from theoretical models. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe
Search for new physics in high-mass diphoton events from proton-proton collisions at âs = 13 TeV
Results are presented from a search for new physics in high-mass diphoton events from proton-proton collisions at sqrt(s) = 13 TeV. The data set was collected in 2016â2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fbâ1 . Events with a diphoton invariant mass greater than 500 GeV are considered. Two diferent techniques are used to predict the standard model backgrounds: parametric fts to the smoothly-falling background and a frst-principles calculation of the standard model diphoton spectrum at next-to-next-to-leading order in perturbative quantum chromodynamics calculations. The
frst technique is sensitive to resonant excesses while the second technique can identify broad diferences in the invariant mass shape. The data are used to constrain the production of heavy Higgs bosons, Randall-Sundrum gravitons, the large extra dimensions model of Arkani-Hamed, Dimopoulos, and Dvali (ADD), and the continuum clockwork mechanism. No statistically signifcant excess is observed. The present results are the strongest limits to date on ADD extra dimensions and RS gravitons with a coupling parameter greater than 0.1
Measurement of b jet shapes in proton-proton collisions at root s=5.02 TeV
We present the first study of charged-hadron production associated with jets originating from b quarks in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data sample used in this study was collected with the CMS detector at the CERN LHC and corresponds to an integrated luminosity of 27.4 pb(-1). To characterize the jet substructure, the differential jet shapes, defined as the normalized transverse momentum distribution of charged hadrons as a function of angular distance from the jet axis, are measured for b jets. In addition to the jet shapes, the per-jet yields of charged particles associated with b jets are also quantified, again as a function of the angular distance with respect to the jet axis. Extracted jet shape and particle yield distributions for b jets are compared with results for inclusive jets, as well as with the predictions from the pythia and herwig++ event generators.Peer reviewe
- âŠ