245 research outputs found

    Characterization of Al-Doped ZnO Transparent Conducting Thin Film Prepared by Off-Axis Magnetron Sputtering

    Get PDF
    The off-axis sputtering technique was used to deposit Al-doped ZnO (AZO) films on glass substrates at room temperature. For the illustration of the sample position in the sputtering chamber, the value of R/r is introduced. Here, r is the radius of AZO target and R is the distance between the sample and the center of substrate holder. A systematic study for the effect of deposition parameters on structural, optical, and electrical properties of AZO films has been investigated in detail. As the sample position of R/r is fixed at 1.8, it is found that the as-deposited AZO film has relatively low resistivity of 2.67 × 10−3 Ω-cm and high transmittance above 80% in the visible region. Additionally, after rapid thermal annealing (RTA) at 600°C with N2 atmosphere, the resistivity of this AZO film can be further reduced to 1.19 × 10−3 Ω-cm. This indicates the AZO films prepared by off-axis magnetron sputtering and treated via the appropriate RTA process have great potential in optoelectronic applications

    Recurrent Upper Quadrant Pain: A Fish Bone Secondary to Gastric Perforation and Liver Abscess

    Get PDF
    A 60-year-old male patient was admitted to our hospital for recurrent upper quadrant pain for 1 month. He had a past history of coronary artery disease. After admission, he repeatedly suffered from high-grade fever, chills and upper quadrant pain. Computed tomography (CT) showed a round hypodense mass in the left lobe of the liver, approximately 2.7 × 2.2 cm in size, and a fish bone was confirmed by surgery in the left lobe of liver. The patient was cured completely after surgical removal of the fish bone and liver abscess. CT scan 1 month after discharge showed that the liver abscess had disappeared completely

    Exploring Markers of Exhausted CD8 T Cells to Predict Response to Immune Checkpoint Inhibitor Therapy for Hepatocellular Carcinoma

    Get PDF
    Background: Reversal of CD8 T-cell exhaustion was considered a major antitumor mechanism of anti-programmed cell death-1 (PD-1)/ anti-programmed death ligand-1 (PD-L1)-based immune checkpoint inhibitor (ICI) therapy. Objectives: The aim of this study was to identify markers of T-cell exhaustion that is best associated with ICI treatment efficacy for advanced hepatocellular carcinoma (HCC). Methods: Immune cell composition of archival tumor samples was analyzed by transcriptomic analysis and multiplex immunofluorescence staining. Results: HCC patients with objective response after anti-PD-1/anti-PD-L1-based ICI therapy (n = 42) had higher expression of genes related to T-cell exhaustion. A 9-gene signature (LAG3, CD244, CCL5, CXCL9, CXCL13, MSR1, CSF3R, CYBB, and KLRK1) was defined, whose expression was higher in patients with response to ICI therapy, correlated with density of CD8+LAG3+ cells in tumor microenvironment, and independently predicted better progression-free and overall survival. This 9-gene signature had similar predictive values for patients who received single-agent or combination ICI therapy and was not associated with prognosis in HCC patients who received surgery, suggesting that it may outperform other T-cell signatures for predicting efficacy of ICI therapy for HCC. For HCC patients who underwent surgery for both the primary liver and metastatic lung tumors (n = 31), lung metastatic HCC was associated with a higher exhausted CD8 T-cell signature, consistent with prior observation that patients with lung metastatic HCC may have higher probability of response to ICI therapy. Conclusions: CD8 T-cell exhaustion in tumor microenvironment may predict better efficacy of ICI therapy for HCC

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies

    Get PDF
    Abstract\ud \ud Background\ud Lignocellulose is one of the most abundant forms of fixed carbon in the biosphere. Current industrial approaches to the degradation of lignocellulose employ enzyme mixtures, usually from a single fungal species, which are only effective in hydrolyzing polysaccharides following biomass pre-treatments. While the enzymatic mechanisms of lignocellulose degradation have been characterized in detail in individual microbial species, the microbial communities that efficiently breakdown plant materials in nature are species rich and secrete a myriad of enzymes to perform “community-level” metabolism of lignocellulose. Single-species approaches are, therefore, likely to miss important aspects of lignocellulose degradation that will be central to optimizing commercial processes.\ud \ud \ud Results\ud Here, we investigated the microbial degradation of wheat straw in liquid cultures that had been inoculated with wheat straw compost. Samples taken at selected time points were subjected to multi-omics analysis with the aim of identifying new microbial mechanisms for lignocellulose degradation that could be applied in industrial pre-treatment of feedstocks. Phylogenetic composition of the community, based on sequenced bacterial and eukaryotic ribosomal genes, showed a gradual decrease in complexity and diversity over time due to microbial enrichment. Taxonomic affiliation of bacterial species showed dominance of Bacteroidetes and Proteobacteria and high relative abundance of genera Asticcacaulis, Leadbetterella and Truepera. The eukaryotic members of the community were enriched in peritrich ciliates from genus Telotrochidium that thrived in the liquid cultures compared to fungal species that were present in low abundance. A targeted metasecretome approach combined with metatranscriptomics analysis, identified 1127 proteins and showed the presence of numerous carbohydrate-active enzymes extracted from the biomass-bound fractions and from the culture supernatant. This revealed a wide array of hydrolytic cellulases, hemicellulases and carbohydrate-binding modules involved in lignocellulose degradation. The expression of these activities correlated to the changes in the biomass composition observed by FTIR and ssNMR measurements.\ud \ud \ud Conclusions\ud A combination of mass spectrometry-based proteomics coupled with metatranscriptomics has enabled the identification of a large number of lignocellulose degrading enzymes that can now be further explored for the development of improved enzyme cocktails for the treatment of plant-based feedstocks. In addition to the expected carbohydrate-active enzymes, our studies reveal a large number of unknown proteins, some of which may play a crucial role in community-based lignocellulose degradation.This work was funded by Biotechnology and Biological Sciences Research\ud Council (BBSRC) Grants BB/1018492/1, BB/K020358/1 and BB/P027717/1, the\ud BBSRC Network in Biotechnology and Bioenergy BIOCATNET and São Paulo\ud Research Foundation (FAPESP) Grant 10/52362-5. ERdA thanks EMBRAPA\ud Instrumentation São Carlos and Dr. Luiz Alberto Colnago for providing the\ud NMR facility and CNPq Grant 312852/2014-2. The authors would like to thank\ud Deborah Rathbone and Susan Heywood from the Biorenewables Develop‑\ud ment Centre for technical assistance in rRNA amplicon sequencing
    • 

    corecore