52 research outputs found

    Imperial hybrids in the age of colonialism : Maintaining dominance over and negotiating desire for the native

    Get PDF
    Hybridity is typically formulated in post-colonial theory as a means of resistance, subversion, or liberatory strategy in the hands of the present-day post-colonial subject or theorist. This project, however, demonstrates hybridity as a means of securing dominance and maintaining control when wielded by the imperialist in Cooper\u27s Last of the Mohicans (1826), Kipling\u27s Kim (1901), and Burroughs\u27 Tarzan of the Apes (1914). The strategic deployment of hybridity in these texts also serves as an opportunity to negotiate the ambivalence and desire for the native that slips out of that hybrid space-- not necessarily sexual desire that flows between two polarized bodies, but rather, triangulated through other mediating terms such as class, nationality or manliness. Across these novels, the location of the native shifts, until it settles within the white body itself in Tarzan. Desire for the native, then, is returned to the white body in a narcissistic circle of self-glorification

    Molecularly Imprinted Polymers for the Recognition of Tobacco Viruses

    Get PDF
    The goal of this research is to elucidate the mechanism of virus recognition in molecularly imprinted polymers (MIPs) using already utilized techniques. The clinical relevance of this study relates to the development of a virus imprinted MIP, which would apply to the identification, classification, and removal of viruses. The separation of viruses and virus-like particles from various media represents an enormous challenge to the fields of medicine, healthcare, and biotechnology. Since virus MIPs must function in aqueous environments, our approach employs a more flexible non-covalent imprinting method which starts from a readily available polymer and utilizes an aqueous environment for both MIP synthesis and testing. Crosslinked polymers imprinted against Tobacco mosaic virus (TMV) via non-covalent interactions were synthesized using poly (allylamine hydrochloride) (PAA), epichlorohydrin (EPI), and TMV. The TMV imprinted polymer exhibited an increase affinity to the target virus compared to the control polymer and demonstrated a preferential affinity (imprinting factor of 2.1), based on shape, to the target virus compared to a non-target virus, Tobacco necrosis virus (TNV). In contrast, there was no significant increase in binding of the control polymer to either target or non-target virus. Once it was determined that virus imprinted polymers can be successfully synthesized having preferential binding to a targeted virus, the synthesis procedure was optimized to obtain better binding characteristics to the targeted virus. Efforts were made to avoid polymer-template aggregation in the MIP pre-polymerization mixture, and determine a proper wash solution by the ability to remove the templated virus from the crosslinked polymer. TMV imprinted hydrogels were synthesized using an optimized procedure and binding test performed on these MIPs to determine binding capacity, and more importantly, imprinting factor. The highest imprinting factor of 2.3 resulted from the MIP composed of 35 % PAA at pH 7, 15 %, ethylene glycol diglycidyl ether (EGDE), and 0.4 mg/mL TMV. The TMV imprinted hydrogels exhibited a lower binding capacity to TNV than when exposed to TMV. These results show that using optimized procedures, TMV MIPs with better shape selectivity can be achieved

    Generation of ribosome imprinted polymers for sensitive detection of translational responses

    Get PDF
    Whilst the profiling of the transcriptome and proteome even of single-cells becomes feasible, the analysis of the translatome, which refers to all messenger RNAs (mRNAs) engaged with ribosomes for protein synthesis, is still an elaborate procedure requiring millions of cells. Herein, we report the generation and use of “smart materials”, namely molecularly imprinted polymers (MIPs) to facilitate the isolation of ribosomes and translated mRNAs from merely 1,000 cells. In particular, we show that a hydrogel-based ribosome imprinted polymer could recover ribosomes and associated mRNAs from human, simian and mice cellular extracts, but did not selectively enrich yeast ribosomes, thereby demonstrating selectivity. Furthermore, ribosome imprinted polymers enabled the sensitive measurement of an mRNA translational regulatory event, requiring 1,000-fold less cells than current methodologies. These results provide first evidence for the suitability of MIPs to selectively recover ribonucleoprotein complexes such as ribosomes, founding a novel means for sensitive detection of gene regulation

    Molecularly Imprinted Polymers for Ochratoxin A Extraction and Analysis

    Get PDF
    Molecularly imprinted polymers (MIPs) are considered as polymeric materials that mimic the functionality of antibodies. MIPs have been utilized for a wide variety of applications in chromatography, solid phase extraction, immunoassays, and sensor recognition. In this article, recent advances of MIPs for the extraction and analysis of ochratoxins are discussed. Selection of functional monomers to bind ochratoxin A (OTA) with high affinities, optimization of extraction procedures, and limitations of MIPs are compared from different reports. The most relevant examples in the literature are described to clearly show how useful these materials are. Strategies on MIP preparation and schemes of analytical methods are also reviewed in order to suggest the next step that would make better use of MIPs in the field of ochratoxin research. The review ends by outlining the remaining issues and impediments

    Molecular imprinting science and technology: a survey of the literature for the years 2004-2011

    Full text link
    corecore