81 research outputs found

    Explaining the large variability in empirical relationships between magnetic pore fabrics and pore space properties

    Get PDF
    The magnetic anisotropy exhibited by ferrofluid-impregnated samples serves as a proxy for their pore fabrics, and is therefore known as magnetic pore fabric. Empirically, the orientation of the maximum susceptibility indicates the average pore elongation direction, and predicts the preferred flow direction. Further, correlations exist between the degree and shape of magnetic anisotropy and the pores’ axial ratio and shape, and between the degrees of magnetic and permeability anisotropies. Despite its potential, the method has been rarely used, likely because the large variability in reported empirical relationships compromises interpretation. Recent work identified an additional contribution of distribution anisotropy, related to the arrangement of the pores, and a strong dependence of anisotropy parameters on the ferrofluid type and concentration, partly explaining the variability. Here, an additional effect is shown; the effective susceptibility of the ferrofluid depends on the measurement frequency, so that the resulting anisotropy depends on measurement conditions. Using synthetic samples with known void geometry and ferrofluids with known susceptibility (4.04 SI and 1.38 SI for EMG705 and EMG909, respectively), magnetic measurements at frequencies from 500 Hz to 512 kHz are compared to numerical predictions. Measurements show a strong frequency-dependence, especially for EMG705, leading to large discrepancies between measured and calculated anisotropy degrees. We also observe artefacts related to the interaction of ferrofluid with its seal, and the aggregation of particles over time. The results presented here provide the basis for a robust and quantitative interpretation of magnetic pore fabrics in future studies, and allow for re-interpretation of previous results provided that the ferrofluid properties and measurement conditions are known. We recommend that experimental settings are selected to ensure a high intrinsic susceptibility of the fluid, and that the effective susceptibility of the fluid at measurement conditions is reported in future studies

    Ferrofluid Impregnation Efficiency and Its Spatial Variability in Natural and Synthetic Porous Media: Implications for Magnetic Pore Fabric Studies

    Get PDF
    Magnetic pore fabrics (MPF) are an efficient way to characterize pore space anisotropy, i.e., the average pore shape and orientation. They are determined by impregnating rocks with ferrofluid and then measuring their magnetic anisotropy. Obtaining even impregnation of the entire pore space is key for reliable results, and a major challenge in MPF studies. Here, impregnation efficiency and its spatial variability are systematically tested for natural (wood, rock) and synthetic (gel) samples, using oil- and water-based ferrofluids, and comparing various impregnation methods: percolation, standard vacuum impregnation, flowthrough vacuum impregnation, immersion, diffusion, and diffusion assisted by magnetic forcing. Seemingly best impregnation was achieved by standard vacuum impregnation and oil-based ferrofluid (76%), and percolation (53%) on rock samples; however, sub-sampling revealed inhomogeneous distribution of the fluid within the samples. Flowthrough vacuum impregnation yielded slightly lower bulk impregnation efficiencies, but more homogeneous distribution of the fluid. Magnetically assisted diffusion led to faster impregnation in gel samples, but appeared to be hindered in rocks by particle aggregation. This suggests that processes other than the mechanical transport of nanoparticles in the pore space need to be taken into account, including potential interactions between the ferrofluid and rock, particle aggregation and filtering. Our results indicate that bulk measurements are not sufficient to assess impregnation efficiency. Since spatial variation of impregnation efficiency may affect MPF orientation, degree and shape, impregnation efficiency should be tested on sub-samples prior to MPF interpretation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11242-022-01809-0

    Palaeomagnetic and mineral magnetic analyses of the Deckenschotter of northern Switzerland and southern Germany

    Get PDF
    The Deckenschotter is a fluvial to glaciofluvial gravel unit in northern Switzerland and southern Germany. The deposits are considered the oldest preserved glacial to interglacial Quaternary deposits in the northern Alpine foreland and are thus important geomorphological markers for landscape evolution. Nevertheless, the age of the deposits is only approximately known and subject to controversial debates. This study presents the results of an extensive palaeomagnetic investigation carried out on intercalated fine-grained sediments at 11 sites of the Höhere Deckenschotter (HDS) and at 5 sites of the Tiefere Deckenschotter (TDS). The HDS show reversed and normal magnetisations, indicating deposition > 0.773 Ma, while the TDS exhibit only normal directions. Age constraints for the different sites are discussed in the light of evidence from other studies. The study therefore clearly supports the efforts to determine the age of the Deckenschotter. As data from previous palaeomagnetic studies on the HDS and TDS have not been published or preserved, this is in fact the only data-based palaeomagnetic study available

    Beyond the second order magnetic anisotropy tensor: Higher-order components due to oriented magnetite exsolutions in pyroxenes, and implications for paleomagnetic and structural interpretations

    Get PDF
    Exsolved iron oxides in silicate minerals can be nearly ideal paleomagnetic recorders, due to their single-domain-like behaviour and the protection from chemical alteration by their surrounding silicate host. Because their geometry is crystallographically controlled by the host silicate, these exsolutions possess a shape preferred orientation that is ultimately controlled by the mineral fabric of the silicates. This leads to potentially significant anisotropic acquisition of remanence, which necessitates correction to make accurate interpretations in paleodirectional and paleointensity studies. Here, we investigate the magnetic shape anisotropy carried by magnetite exsolutions in pyroxene single crystals, and in pyroxene-bearing rocks based on torque measurements and rotational hysteresis data. Image analysis is used to characterize the orientation distribution of oxides, from which the observed anisotropy can be modelled. Both the high-field torque signal and corresponding models contain components of higher order, which cannot be accurately described by second order tensors usually employed to describe magnetic fabrics. Conversely, low-field anisotropy data do not show this complexity and can be adequately described with second-order tensors. Hence, magnetic anisotropy of silicate-hosted exsolutions is field-dependent and this should be taken into account when interpreting isolated ferromagnetic fabrics, and in anisotropy corrections

    Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase

    Get PDF
    Feldspars are the most abundant rock-forming minerals in the Earth’s crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 × 10−9 m3 kg−1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice

    Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase

    Get PDF
    Feldspars are the most abundant rock-forming minerals in the Earth’s crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 × 10−9 m3 kg−1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore