612 research outputs found

    Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression.

    Get PDF
    Mutations of the PTEN-induced kinase 1 (PINK1) gene are a cause of autosomal recessive Parkinson's disease (PD). This gene encodes a mitochondrial serine/threonine kinase, which is partly localized to mitochondria, and has been shown to play a role in protecting neuronal cells from oxidative stress and cell death, perhaps related to its role in mitochondrial dynamics and mitophagy. In this study, we report that increased mitochondrial PINK1 levels observed in human neuroblastoma SH-SY5Y cells after carbonyl cyanide m-chlorophelyhydrazone (CCCP) treatment were due to de novo protein synthesis, and not just increased stabilization of full length PINK1 (FL-PINK1). PINK1 mRNA levels were significantly increased by 4-fold after 24h. FL-PINK1 protein levels at this time point were significantly higher than vehicle-treated, or cells treated with CCCP for 3h, despite mitochondrial content being decreased by 29%. We have also shown that CCCP dissipated the mitochondrial membrane potential (Δψm) and induced entry of extracellular calcium through L/N-type calcium channels. The calcium chelating agent BAPTA-AM impaired the CCCP-induced PINK1 mRNA and protein expression. Furthermore, CCCP treatment activated the transcription factor c-Fos in a calcium-dependent manner. These data indicate that PINK1 expression is significantly increased upon CCCP-induced mitophagy in a calcium-dependent manner. This increase in expression continues after peak Parkin mitochondrial translocation, suggesting a role for PINK1 in mitophagy that is downstream of ubiquitination of mitochondrial substrates. This sensitivity to intracellular calcium levels supports the hypothesis that PINK1 may also play a role in cellular calcium homeostasis and neuroprotection

    Autonomic impairment of patients in coma with different Glasgow coma score assessed with heart rate variability

    Get PDF
    Primary objective: The objective of this study is to assess the functional state of the autonomic nervous system in healthy individuals and in individuals in coma using measures of heart rate variability (HRV) and to evaluate its efficiency in predicting mortality. Design and Methods: Retrospective group comparison study of patients in coma classified into two subgroups, according to their Glasgow coma score, with a healthy control group. HRV indices were calculated from 7 min of artefact-free electrocardiograms using the Hilbert–Huang method in the spectral range 0.02–0.6 Hz. A special procedure was applied to avoid confounding factors. Stepwise multiple regression logistic analysis (SMLRA) and ROC analysis evaluated predictions. Results: Progressive reduction of HRV was confirmed and was associated with deepening of coma and a mortality score model that included three spectral HRV indices of absolute power values of very low, low and very high frequency bands (0.4-0.6 Hz). The SMLRA model showed sensitivity of 95.65%, specificity of 95.83%, positive predictive value of 95.65%, and overall efficiency of 95.74%. Conclusions: HRV is a reliable method to assess the integrity of the neural control of the caudal brainstem centres on the hearts of patients in coma and to predict patient mortality

    Plasmodium vivax Sub-Patent Infections after Radical Treatment Are Common in Peruvian Patients: Results of a 1-Year Prospective Cohort Study

    Get PDF
    BACKGROUND: There is an increasing body of literature reporting treatment failure of the currently recommended radical treatment of Plasmodium vivax infections. As P. vivax is the main malaria species outside the African continent, emerging tolerance to its radical treatment regime could have major consequences in countries like Peru, where 80% of malaria cases are due to P. vivax. Here we describe the results of a 1-year longitudinal follow up of 51 confirmed P. vivax patients living around Iquitos, Peruvian Amazon, and treated according to the Peruvian national guidelines. METHODOLOGY: Each month a blood sample for microscopy and later genotyping was systematically collected. Recent exposure to infection was estimated by detecting antibodies against the P. vivax circumsporozoite protein (CSP) and all PCR confirmed P. vivax infections were genotyped with 16 polymorphic microsatellites. RESULTS: During a 1-year period, 84 recurrent infections, 22 positive also by microscopy, were identified, with a median survival time to first recurrent infection of 203 days. Most of them (71%) were asymptomatic; in 13 patients the infection persisted undetected by microscopy for several consecutive months. The genotype of mostly recurrent infections differed from that at day 0 while fewer differences were seen between the recurrent infections. The average expected heterozygosity was 0.56. There was strong linkage disequilibrium (I(A) (s) = 0.29, p<1.10(-4)) that remained also when analyzing only the unique haplotypes, suggesting common inbreeding. CONCLUSION: In Peru, the P. vivax recurrent infections were common and displayed a high turnover of parasite genotypes compared to day 0. Plasmodium vivax patients, even when treated according to the national guidelines, may still represent an important parasite reservoir that can maintain transmission. Any elimination effort should consider such a hidden reservoir

    Structure and evolution of the gorilla and orangutan growth hormone loci

    Get PDF
    In primates, the unigenic growth hormone (GH) locus of prosimians, expressed primarily in the anterior pituitary, evolved by gene duplications, independently in New World Monkeys (NWM) and Old World Monkeys (OWMs)/apes, to give complex clusters of genes expressed in the pituitary and placenta. In human and chimpanzee, the GH locus comprises five genes, GH-N being expressed as pituitary GH, whereas GH-V (placental GH) and CSHs (chorionic somatomammotropins) are expressed (in human and probably chimpanzee) in the placenta; the CSHs comprise CSH-A, CSH-B and the aberrant CSH-L (possibly a pseudogene) in human, and CSH-A1, CSH-A2 and CSH-B in chimpanzee. Here the GH locus in two additional great apes, gorilla (Gorilla gorilla gorilla) and orangutan (Pongo abelii), is shown to contain six and four GH-like genes respectively. The gorilla locus possesses six potentially expressed genes, gGH-N, gGH-V and four gCSHs, whereas the orangutan locus has just three functional genes, oGH-N, oGH-V and oCSH-B, plus a pseudogene, oCSH-L. Analysis of regulatory sequences, including promoter, enhancer and P-elements, shows significant variation; in particular the proximal Pit-1 element of GH-V genes differs markedly from that of other genes in the cluster. Phylogenetic analysis shows that the initial gene duplication led to distinct GH-like and CSH-like genes, and that a second duplication provided separate GH-N and GH-V. However, evolution of the CSH-like genes remains unclear. Rapid adaptive evolution gave rise to the distinct CSHs, after the first duplication, and to GH-V after the second duplication. Analysis of transcriptomic databases derived from gorilla tissues establishes that the gGH-N, gGH-V and several gCSH genes are expressed, but the significance of the many CSH genes in gorilla remains unclear

    Genomic Characterization of Host Factors Related to SARS-CoV-2 Infection in People with Dementia and Control Populations: The GR@ACE/DEGESCO Study

    Get PDF
    Emerging studies have suggested several chromosomal regions as potential host genetic factors involved in the susceptibility to SARS-CoV-2 infection and disease outcome. We nested a COVID-19 genome-wide association study using the GR@ACE/DEGESCO study, searching for susceptibility factors associated with COVID-19 disease. To this end, we compared 221 COVID-19 confirmed cases with 17,035 individuals in whom the COVID-19 disease status was unknown. Then, we performed a meta-analysis with the publicly available data from the COVID-19 Host Genetics Initiative. Because the APOE locus has been suggested as a potential modifier of COVID-19 disease, we added sensitivity analyses stratifying by dementia status or by disease severity. We confirmed the existence of the 3p21.31 region (LZTFL1, SLC6A20) implicated in the susceptibility to SARS-CoV-2 infection and TYK2 gene might be involved in COVID-19 severity. Nevertheless, no statistically significant association was observed in the COVID-19 fatal outcome or in the stratified analyses (dementia-only and non-dementia strata) for the APOE locus not supporting its involvement in SARS-CoV-2 pathobiology or COVID-19 prognosis

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Natural History of MYH7-Related Dilated Cardiomyopathy

    Get PDF
    BACKGROUND: Variants in myosin heavy chain 7 (MYH7) are responsible for disease in 1% to 5% of patients with dilated cardiomyopathy (DCM); however, the clinical characteristics and natural history of MYH7-related DCM are poorly described. OBJECTIVE: We sought to determine the phenotype and prognosis of MYH7-related DCM. We also evaluated the influence of variant location on phenotypic expression. METHODS: We studied clinical data from 147 individuals with DCM-causing MYH7 variants (47.6% female; 35.6 ± 19.2 years) recruited from 29 international centers. RESULTS: At initial evaluation, 106 (72.1%) patients had DCM (left ventricular ejection fraction: 34.5% ± 11.7%). Median follow-up was 4.5 years (IQR: 1.7-8.0 years), and 23.7% of carriers who were initially phenotype-negative developed DCM. Phenotypic expression by 40 and 60 years was 46% and 88%, respectively, with 18 patients (16%) first diagnosed at <18 years of age. Thirty-six percent of patients with DCM met imaging criteria for LV noncompaction. During follow-up, 28% showed left ventricular reverse remodeling. Incidence of adverse cardiac events among patients with DCM at 5 years was 11.6%, with 5 (4.6%) deaths caused by end-stage heart failure (ESHF) and 5 patients (4.6%) requiring heart transplantation. The major ventricular arrhythmia rate was low (1.0% and 2.1% at 5 years in patients with DCM and in those with LVEF of ≤35%, respectively). ESHF and major ventricular arrhythmia were significantly lower compared with LMNA-related DCM and similar to DCM caused by TTN truncating variants. CONCLUSIONS: MYH7-related DCM is characterized by early age of onset, high phenotypic expression, low left ventricular reverse remodeling, and frequent progression to ESHF. Heart failure complications predominate over ventricular arrhythmias, which are rare
    corecore