16 research outputs found
Dimension reduction for systems with slow relaxation
We develop reduced, stochastic models for high dimensional, dissipative
dynamical systems that relax very slowly to equilibrium and can encode long
term memory. We present a variety of empirical and first principles approaches
for model reduction, and build a mathematical framework for analyzing the
reduced models. We introduce the notions of universal and asymptotic filters to
characterize `optimal' model reductions for sloppy linear models. We illustrate
our methods by applying them to the practically important problem of modeling
evaporation in oil spills.Comment: 48 Pages, 13 figures. Paper dedicated to the memory of Leo Kadanof
Longevity and Composition of Cellular Immune Responses Following Experimental Plasmodium falciparum Malaria Infection in Humans
Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz) and asexual blood-stage (PfRBC) malaria parasites in naïve human volunteers undergoing single (n = 5) or multiple (n = 10) experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2) responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only ‘adaptive’ but also ‘innate’ lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO+ CD62L- effector memory (EM) phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ+IL-2+) EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P. falciparum, with a persisting contribution by not only adaptive but also (semi-)innate lymphocyte subsets. The implications hereof are positive for malaria vaccine development, but focus attention on those factors potentially inhibiting such responses in the field
No Evidence that Knops Blood Group Polymorphisms Affect Complement Receptor 1 Clustering on Erythrocytes
Clustering of Complement Receptor 1 (CR1) in the erythrocyte membrane is important for immune-complex transfer and clearance. CR1 contains the Knops blood group antigens, including the antithetical pairs Swain-Langley 1 and 2 (Sl1 and Sl2) and McCoy a and b (McCa and McCb), whose functional effects are unknown. We tested the hypothesis that the Sl and McC polymorphisms might influence CR1 clustering on erythrocyte membranes. Blood samples from 125 healthy Kenyan children were analysed by immunofluorescence and confocal microscopy to determine CR1 cluster number and volume. In agreement with previous reports, CR1 cluster number and volume were positively associated with CR1 copy number (mean number of CR1 molecules per erythrocyte). Individuals with the McCb/McCb genotype had more clusters per cell than McCa/McCa individuals. However, this association was lost when the strong effect of CR1 copy number was included in the model. No association was observed between Sl genotype, sickle cell genotype, α+thalassaemia genotype, gender or age and CR1 cluster number or volume. Therefore, after correction for CR1 copy number, the Sl and McCoy polymorphisms did not influence erythrocyte CR1 clustering, and the effects of the Knops polymorphisms on CR1 function remains unknown
Red blood cell complement receptor one level varies with Knops blood group, α(+)thalassaemia and age among Kenyan children
Both the invasion of red blood cells (RBCs) by Plasmodium falciparum parasites and the sequestration of parasite-infected RBCs in the microvasculature are mediated in part by complement receptor one (CR1). RBC surface CR1 level can vary between individuals by more than 20-fold and may be associated with the risk of severe malaria. The factors that influence RBC CR1 level variation are poorly understood, particularly in African populations. We studied 3535 child residents of a malaria-endemic region of coastal Kenya and report, for the first time, that the CR1 Knops blood group alleles Sl2 and McC(b), and homozygous HbSS are positively associated with RBC CR1 level. Sickle cell trait and ABO blood group did not influence RBC CR1 level. We also confirm the previous observation that α(+)thalassaemia is associated with reduced RBC CR1 level, possibly due to small RBC volume, and that age-related changes in RBC CR1 expression occur throughout childhood. RBC CR1 level in malaria-endemic African populations is a complex phenotype influenced by multiple factors that should be taken into account in the design and interpretation of future studies on CR1 and malaria susceptibility
Thigh-length compression stockings and DVT after stroke
Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease
Does malaria suffer from lack of memory?
It is widely perceived that immunity to malaria is, to an extent, defective and that one component of this defective immune response is the inability to induce or maintain long-term memory responses. If true, this is likely to pose problems for development of an effective vaccine against malaria. In this article, we critically review and challenge this interpretation of the epidemiological and experimental evidence. While evasion and modulation of host immune responses clearly occurs and naturally acquired immunity is far from optimal, mechanisms to control blood-stage parasites are acquired and maintained by individuals living in endemic areas, allowing parasite density to be kept below the threshold for induction of acute disease. Furthermore, protective immunity to severe pathology is achieved relatively rapidly and is maintained in the absence of boosting by re-infection. Nevertheless, there are significant challenges to overcome. The need for multiple infections to acquire immunity means that young children remain at risk of infection for far too long. Persistent or frequent exposure to antigen seems to be required to maintain anti-parasite immunity (premunition). Lastly, pre-erythrocytic and sexual stages of the life cycle are poorly immunogenic, and there is little evidence of effective pre-erythrocytic or transmission-blocking immunity at the population level. While these problems might theoretically be due to defective immunological memory, we suggest alternative explanations. Moreover, we question the extent to which these problems are malaria-specific rather than generic (i.e. result from inherent limitations of the vertebrate immune system)