22 research outputs found

    European fitness landscape for children and adolescents: updated reference values, fitness maps and country rankings based on nearly 8 million test results from 34 countries gathered by the FitBack network

    Get PDF
    Objectives (1) To develop reference values for health-related fitness in European children and adolescents aged 6–18 years that are the foundation for the web-based, open-access and multilanguage fitness platform (FitBack); (2) to provide comparisons across European countries. Methods This study builds on a previous large fitness reference study in European youth by (1) widening the age demographic, (2) identifying the most recent and representative country-level data and (3) including national data from existing fitness surveillance and monitoring systems. We used the Assessing Levels of PHysical Activity and fitness at population level (ALPHA) test battery as it comprises tests with the highest test–retest reliability, criterion/construct validity and health-related predictive validity: the 20 m shuttle run (cardiorespiratory fitness); handgrip strength and standing long jump (muscular strength); and body height, body mass, body mass index and waist circumference (anthropometry). Percentile values were obtained using the generalised additive models for location, scale and shape method. Results A total of 7 966 693 test results from 34 countries (106 datasets) were used to develop sex-specific and age-specific percentile values. In addition, country-level rankings based on mean percentiles are provided for each fitness test, as well as an overall fitness ranking. Finally, an interactive fitness platform, including individual and group reporting and European fitness maps, is provided and freely available online (www.fitbackeurope.eu). Conclusion This study discusses the major implications of fitness assessment in youth from health, educational and sport perspectives, and how the FitBack reference values and interactive web-based platform contribute to it. Fitness testing can be conducted in school and/or sport settings, and the interpreted results be integrated in the healthcare systems across Europe

    Human Lifespan: To Live and Outlive 100 Years?

    Get PDF
    Starenje populacije je dominantno demografsko obilježje razvijenih zemalja. Stogodišnjaci su selekcionirana skupina i samo jedna od 7.000 do 10.000 osoba dosegne tu dob. Čimbenici dugovječnosti vjerojatno su brojni i uključuju gensko predodređenje (lokus na 4. kromosomu), zdrav okoliš i zdrave životne navike (prehrana s malo kalorija), redovita tjelesna i psihička aktivnost, kao i dostupnost te učinkovitost zdravstvene zaštite s primjenom geroprofi lakse. Stogodišnjaci se adaptiraju na novi život i na gubitak tjelesnih funkcija koji bivaju postupno sve izraženiji kako se dob povisuje. Granice ljudskog života produžuju se - do sada najstarija poznata osoba doživjela je 128 godina. Pojedina zemljopisna područja bilježe izrazito veći broj stogodišnjaka. Navedene su i neke dugovječne osobe s više od 100 godina u svijetu i na području Republike Hrvatske i nekih susjednih zemalja. Iako se uglavnom smatra da se granica trajanja života čovjeka ne može produžiti iznad 120 godina, za sada je ipak teško predvidjeti gdje su njezine granice.Aged population dominates in developed countries. Centenarians are a select group, and only one in 7,000 to 10,000 reach that age. Factors of longevity are numerous and include genetic predisposition (a locus on chromosome 4), environment, healthy lifestyle (hypocaloric diet, regular physical and mental exercise), accessible health services, and effi cient health protection at old age. Centenarians are well adapted to the new life and compensate for the loss of functions with age. The limits of human life are extended, so that nowadays the oldest person has reached the age of 128. Some geographic areas are characterised by higher numbers of centenarians. This article mentions a few individuals who outlived 100 years in the world, Croatia, and neighbouring countries. Although some argue that the limits of human life cannot be extended over the age of 120 years, for now we cannot predict the actual limits of human life

    European fitness landscape for children and adolescents: updated reference values, fitness maps and country rankings based on nearly 8 million test results from 34 countries gathered by the FitBack network

    Get PDF
    Objectives (1) To develop reference values for health-related fitness in European children and adolescents aged 6–18 years that are the foundation for the web-based, open-access and multilanguage fitness platform (FitBack); (2) to provide comparisons across European countries. Methods This study builds on a previous large fitness reference study in European youth by (1) widening the age demographic, (2) identifying the most recent and representative country-level data and (3) including national data from existing fitness surveillance and monitoring systems. We used the Assessing Levels of Physical Activity and fitness at population level (ALPHA) test battery as it comprises tests with the highest test–retest reliability, criterion/construct validity and health-related predictive validity: the 20 m shuttle run (cardiorespiratory fitness); handgrip strength and standing long jump (muscular strength); and body height, body mass, body mass index and waist circumference (anthropometry). Percentile values were obtained using the generalised additive models for location, scale and shape method. Results A total of 7 966 693 test results from 34 countries (106 datasets) were used to develop sex-specific and age-specific percentile values. In addition, country-level rankings based on mean percentiles are provided for each fitness test, as well as an overall fitness ranking. Finally, an interactive fitness platform, including individual and group reporting and European fitness maps, is provided and freely available online (www.fitbackeurope.eu)

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants.

    Get PDF
    BACKGROUND: Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. METHODS: We used data from 1990 to 2019 on people aged 30-79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. FINDINGS: The number of people aged 30-79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306-359) million women and 317 (292-344) million men in 1990 to 626 (584-668) million women and 652 (604-698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55-62) of women and 49% (46-52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43-51) of women and 38% (35-41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20-27) for women and 18% (16-21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. INTERPRETATION: Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings. FUNDING: WHO

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants

    Get PDF
    Background Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. Methods We used data from 1990 to 2019 on people aged 30-79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. Findings The number of people aged 30-79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306-359) million women and 317 (292-344) million men in 1990 to 626 (584-668) million women and 652 (604-698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55-62) of women and 49% (46-52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43-51) of women and 38% (35-41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20-27) for women and 18% (16-21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. Interpretation Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings. Copyright (C) 2021 World Health Organization; licensee Elsevier

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants

    Get PDF
    Background Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. Methods We used data from 1990 to 2019 on people aged 30–79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. Findings The number of people aged 30–79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306–359) million women and 317 (292–344) million men in 1990 to 626 (584–668) million women and 652 (604–698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55–62) of women and 49% (46–52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43–51) of women and 38% (35–41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20–27) for women and 18% (16–21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. Interpretation Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings

    Associations between physical activity and health-related physical fitness in 17 years-old girls

    Get PDF
    <p>The aim of the study was to investigate the relationships between physical activity (PA) and health-related physical fitness (HRPF) of 17-year- old girls. The study was performed in 12 randomly selected<br />secondary schools of Lithuania. The sample consisted of 233 17-year-old girls who were classified into three sub-groups according to their level of PA. PA level was assessed using the modified Short Form of IPAQ questionnaire. Body mass and height were measured and body mass index (BMI) was calculated. HRPF was estimated by measuring speed and agility (10x5m shuttle test), explosive strength (standing broad jump test), trunk strength (sit-up test) and flexibility (sit-and-reach test). Body mass and BMI significantly differed among PA groups with the highest values in the Low PA group and the lowest in the High PA group. Girls experiencing higher PA levels scored better on explosive strength test. Flexibility, trunk strength scores, speed, and agility did not significantly differ among PA groups. The relationship between total volume of PA and explosive strength was low. No significant relationships were found between total volume of PA and other HRPF components. In addition, a significant association in explosive strength was identified. The 17-year-old girls experiencing a higher PA level have better explosive strength. However, no statistically significant relationships were found among 17-year-old girls’ total volume of PA and other HRPF components − flexibility, trunk strength, speed and agility.</p

    Associations between physical activity and health-related physical fitness in 17 years-old girls

    No full text
    The aim of the study was to investigate the relationships between physical activity (PA) and health-related physical fitness (HRPF) of 17-year- old girls. The study was performed in 12 randomly selected secondary schools of Lithuania. The sample consisted of 233 17-year-old girls who were classified into three sub-groups according to their level of PA. PA level was assessed using the modified Short Form of IPAQ questionnaire. Body mass and height were measured and body mass index (BMI) was calculated. HRPF was estimated by measuring speed and agility (10x5m shuttle test), explosive strength (standing broad jump test), trunk strength (sit-up test) and flexibility (sit-and-reach test). Body mass and BMI significantly differed among PA groups with the highest values in the Low PA group and the lowest in the High PA group. Girls experiencing higher PA levels scored better on explosive strength test. Flexibility, trunk strength scores, speed, and agility did not significantly differ among PA groups. The relationship between total volume of PA and explosive strength was low. No significant relationships were found between total volume of PA and other HRPF components. In addition, a significant association in explosive strength was identified. The 17-year-old girls experiencing a higher PA level have better explosive strength. However, no statistically significant relationships were found among 17-year-old girls’ total volume of PA and other HRPF components − flexibility, trunk strength, speed and agility
    corecore