42 research outputs found
effect of environmental conditions on the durability of polycarbonate for the protection of cultural heritage sites
Polycarbonate is a good material for covering and protecting cultural heritage sites because of its durability, mechanical properties, and transparency. However, polycarbonate degrades under environmental weathering with a significant decrease of physical and mechanical properties and loss of transparency. In this work, the contemporary presence of ultraviolet irradiation and different temperature and moisture conditions have been taken into account to study the environmental degradation of this polymer with regard to its mechanical and optical properties. The photo-oxidation reactions cause a decrease in the molecular weight and the formation of many oxygenated species. The hydrolytic scission, instead, gives rise to a remarkable reduction in the molecular weight. These two different degradation mechanisms do not seem interconnected because at the lowest degradation temperature and high humidity levels, the reduction of the molecular weight is more pronounced than that observed at the highest temperature but at a lower humidity level. Transparency decreases with the degradative processes, but even after severe degradation the loss of transparency is only about 10%. The yellowness index increases during the first stages of degradation, which has been attributed to the fast formation of carbonyl groups due to photo-oxidation
Mechanical, thermomechanical and reprocessing behavior of green composites from biodegradable polymer and wood flour
The rising concerns in terms of environmental protection and the search for more versatile polymer-based materials have led to an increasing interest in the use of polymer composites filled with natural organic fillers (biodegradable and/or coming from renewable resources) as a replacement for traditional mineral inorganic fillers. At the same time, the recycling of polymers is still of fundamental importance in order to optimize the utilization of available resources, reducing the environmental impact related to the life cycle of polymer-based items. Green composites from biopolymer matrix and wood flour were prepared and the investigation focused on several issues, such as the effect of reprocessing on the matrix properties, wood flour loading effects on virgin and reprocessed biopolymer, and wood flour effects on material reprocessability. Tensile, Dynamic-mechanical thermal (DMTA), differential scanning calorimetry (DSC) and creep tests were performed, pointing out that wood flour leads to an improvement of rigidity and creep resistance in comparison to the pristine polymer, without compromising other properties such as the tensile strength. The biopolymer also showed a good resistance to multiple reprocessing; the latter even allowed for improving some properties of the obtained green composites
Identification of miRNAs of Strongyloides stercoralis L1 and iL3 larvae isolated from human stool
Strongyloidiasis is a neglected tropical disease caused by the soil-transmitted nematode by Strongyloides stercoralis, that affects approximately 600 million people worldwide. In immunosuppressed individuals disseminated strongyloidiasis can rapidly lead to fatal outcomes. There is no gold standard for diagnosing strongyloidiasis, and infections are frequently misdiagnosed. A better understanding of the molecular biology of this parasite can be useful for example for the discovery of potential new biomarkers. Interestingly, recent evidence showed the presence of small RNAs in Strongyloididae, but no data was provided for S. stercoralis. In this study, we present the first identification of miRNAs of both L1 and iL3 larval stages of S. stercoralis. For our purpose, the aims were: (i) to analyse the miRNome of L1 and iL3 S. stercoralis and to identify potential miRNAs of this nematode, (ii) to obtain the mRNAs profiles in these two larval stages and (iii) to predict potential miRNA target sites in mRNA sequences. Total RNA was isolated from L1 and iL3 collected from the stool of 5 infected individuals. For the miRNAs analysis, we used miRDeep2 software and a pipeline of bio-informatic tools to construct a catalog of a total of 385 sequences. Among these, 53% were common to S. ratti, 19% to S. papillosus, 1% to Caenorhabditis elegans and 44% were novel. Using a differential analysis between the larval stages, we observed 6 suggestive modulated miRNAs (STR-MIR-34A-3P, STR-MIR-8397-3P, STR-MIR-34B-3P and STR-MIR-34C-3P expressed more in iL3, and STR-MIR-7880H-5P and STR-MIR-7880M-5P expressed more in L1). Along with this analysis, we obtained also the mRNAs profiles in the same samples of larvae. Multiple testing found 81 statistically significant mRNAs of the total 1553 obtained (FDR < 0.05; 32 genes expressed more in L1 than iL3; 49 genes expressed more in L3 than iL1). Finally, we found 33 predicted mRNA targets of the modulated miRNAs, providing relevant data for a further validation to better understand the role of these small molecules in the larval stages and their valuein clinical diagnostics
Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants
Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
Rising rural body-mass index is the main driver of the global obesity epidemic in adults
Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We
estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from
1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
Methods We used data from 3663 population-based studies with 222 million participants that measured height and
weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate
trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children
and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the
individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference)
and obesity (BMI >2 SD above the median).
Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in
11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed
changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and
140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of
underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and
countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior
probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse
was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of
thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a
posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%)
with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and
obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for
both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such
as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged
children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls
in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and
42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents,
the increases in double burden were driven by increases in obesity, and decreases in double burden by declining
underweight or thinness.
Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an
increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy
nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of
underweight while curbing and reversing the increase in obesit
Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)
From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions