167 research outputs found

    Emotional valence and arousal affect reading in an interactive way: neuroimaging evidence for an approach-withdrawal framework

    Get PDF
    A growing body of literature shows that the emotional content of verbal material affects reading, wherein emotional words are given processing priority compared to neutral words. Human emotions can be conceptualised within a two-dimensional model comprised of emotional valence and arousal (intensity). These variables are at least in part distinct, but recent studies report interactive effects during implicit emotion processing and relate these to stimulus-evoked approach-withdrawal tendencies. The aim of the present study was to explore how valence and arousal interact at the neural level, during implicit emotion word processing. The emotional attributes of written word stimuli were orthogonally manipulated based on behavioural ratings from a corpus of emotion words. Stimuli were presented during an fMRI experiment while 16 participants performed a lexical decision task, which did not require explicit evaluation of a word's emotional content. Results showed greater neural activation within right insular cortex in response to stimuli evoking conflicting approach-withdrawal tendencies (i.e., positive high-arousal and negative low-arousal words) compared to stimuli evoking congruent approach vs. withdrawal tendencies (i.e., positive low-arousal and negative high-arousal words). Further, a significant cluster of activation in the left extra-striate cortex was found in response to emotional than neutral words, suggesting enhanced perceptual processing of emotionally salient stimuli. These findings support an interactive two-dimensional approach to the study of emotion word recognition and suggest that the integration of valence and arousal dimensions recruits a brain region associated with interoception, emotional awareness and sympathetic functions

    Systematic Analysis of Cell Cycle Effects of Common Drugs Leads to the Discovery of a Suppressive Interaction between Gemfibrozil and Fluoxetine

    Get PDF
    Screening chemical libraries to identify compounds that affect overall cell proliferation is common. However, in most cases, it is not known whether the compounds tested alter the timing of particular cell cycle transitions. Here, we evaluated an FDA-approved drug library to identify pharmaceuticals that alter cell cycle progression in yeast, using DNA content measurements by flow cytometry. This approach revealed strong cell cycle effects of several commonly used pharmaceuticals. We show that the antilipemic gemfibrozil delays initiation of DNA replication, while cells treated with the antidepressant fluoxetine severely delay progression through mitosis. Based on their effects on cell cycle progression, we also examined cell proliferation in the presence of both compounds. We discovered a strong suppressive interaction between gemfibrozil and fluoxetine. Combinations of interest among diverse pharmaceuticals are difficult to identify, due to the daunting number of possible combinations that must be evaluated. The novel interaction between gemfibrozil and fluoxetine suggests that identifying and combining drugs that show cell cycle effects might streamline identification of drug combinations with a pronounced impact on cell proliferation

    Dpr Acts as a Molecular Switch, Inhibiting Wnt Signaling when Unphosphorylated, but Promoting Wnt Signaling when Phosphorylated by Casein Kinase Iδ/ε

    Get PDF
    The Wnt pathway is a key regulator of development and tumorigenesis. Dpr (Dact/Frodo) influences Wnt signaling in part through the interaction of its PDZ-B domain with Dsh's PDZ domain. Studies have shown that XDpr1a and its close relative, Frodo, are involved in multiple steps of the Wnt pathway in either inhibitory or activating roles. We found that XDpr1a is phosphorylated by casein kinase Iδ/ε (CKIδ/ε), an activator of Wnt signaling, in the presence of XDsh. Abrogating XDpr1a's ability to bind XDsh through mutation of XDpr1a's PDZ-B domain blocks CK1δ/ε's phosphorylation of XDpr1a. Conversely, XDsh possessing a mutation in its PDZ domain that is unable to bind XDpr1a does not promote XDpr1a phosphorylation. Phosphorylation of XDpr1a and XDsh by CKIδ/ε decreases their interaction. Moreover, the phosphorylation of XDpr1a by CKIδ/ε not only abrogates XDpr1a's promotion of β-catenin degradation but blocks β-catenin degradation. Our data suggest that XDpr1a phosphorylation by CKIδ/ε is dependent on the interaction of XDpr1a's PDZ-B domain with XDsh's PDZ domain, and that the phosphorylation state of XDpr1a determines whether it inhibits or activates Wnt signaling

    Estimation of Short-Term Effects of Air Pollution on Stroke Hospital Admissions in Wuhan, China

    Get PDF
    Background and Objective:High concentrations of air pollutants have been linked to increased incidence of stroke in North America and Europe but not yet assessed in mainland China. The aim of this study is to evaluate the association between stroke hospitalization and short-term elevation of air pollutants in Wuhan, China.Methods:Daily mean NO2, SO2 and PM10 levels, temperature and humidity were obtained from 2006 through 2008. Data on stroke hospitalizations (ICD 10: I60-I69) at four hospitals in Wuhan were obtained for the same period. A time-stratified case-crossover design was performed by season (April-September and October-March) to assess effects of pollutants on stroke hospital admissions.Results:Pollution levels were higher in October-March with averages of 136.1 μg/m3 for PM10, 63.6 μg/m3 for NO2 and 71.0 μg/m3 for SO2 than in April-September when averages were 102.0 μg/m3, 41.7 μg/m3 and 41.7 μg/m3, respectively (p<.001). During the cold season, every 10 μg/m3 increase in NO2 was associated with a 2.9% (95%C.I. 1.2%-4.6%) increase in stroke admissions on the same day. Every 10 ug/m3 increase in PM10 daily concentration was significantly associated with an approximate 1% (95% C.I. 0.1%-1.4%) increase in stroke hospitalization. A two-pollutant model indicated that NO2 was associated with stroke admissions when controlling for PM10. During the warm season, no significant associations were noted for any of the pollutants.Conclusions:Exposure to NO2 is significantly associated with stroke hospitalizations during the cold season in Wuhan, China when pollution levels are 50% greater than in the warm season. Larger and multi-center studies in Chinese cities are warranted to validate our findings. © 2013 Xiang et al

    Validation of the Body Concealment Scale for Scleroderma (BCSS): Replication in the Scleroderma Patient-centered Intervention Network (SPIN) Cohort

    Get PDF
    © 2016 Elsevier Ltd Body concealment is an important component of appearance distress for individuals with disfiguring conditions, including scleroderma. The objective was to replicate the validation study of the Body Concealment Scale for Scleroderma (BCSS) among 897 scleroderma patients. The factor structure of the BCSS was evaluated using confirmatory factor analysis and the Multiple-Indicator Multiple-Cause model examined differential item functioning of SWAP items for sex and age. Internal consistency reliability was assessed via Cronbach's alpha. Construct validity was assessed by comparing the BCSS with a measure of body image distress and measures of mental health and pain intensity. Results replicated the original validation study, where a bifactor model provided the best fit. The BCSS demonstrated strong internal consistency reliability and construct validity. Findings further support the BCSS as a valid measure of body concealment in scleroderma and provide new evidence that scores can be compared and combined across sexes and ages

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
    corecore