809 research outputs found

    Intrinsic functional network contributions to the relationship between trait empathy and subjective happiness

    Get PDF
    幸福感と共感性を関連付ける安静時脳機能ネットワークの解明 --前頭前皮質の機能的結合性の役割--. 京都大学プレスリリース. 2021-01-08.Subjective happiness (well-being) is a multi-dimensional construct indexing one's evaluations of everyday emotional experiences and life satisfaction, and has been associated with different aspects of trait empathy. Despite previous research identifying the neural substrates of subjective happiness and empathy, the mechanisms mediating the relationship between the two constructs remain largely unclear. Here, we performed a data-driven, multi-voxel pattern analysis of whole-brain intrinsic functional connectivity to reveal the neural mechanisms of subjective happiness and trait empathy in a sample of young females. Behaviorally, we found that subjective happiness was negatively associated with personal distress (i.e., self-referential experience of others’ feelings). Consistent with this inverse relationship, subjective happiness was associated with the dorsolateral prefrontal cortex exhibiting decreased functional connectivity with regions important for the representation of unimodal sensorimotor information (e.g., primary sensory cortices) or multi-modal summaries of brain states (e.g., default mode network) and increased functional connectivity with regions important for the attentional modulation of these representations (e.g., frontoparietal, attention networks). Personal distress was associated with the medial prefrontal cortex exhibiting functional connectivity differences with similar networks––but in the opposite direction. Finally, intrinsic functional connectivity within and between these networks fully mediated the relationship between the two behavioral measures. These results identify an important contribution of the macroscale functional organization of the brain to human well-being, by demonstrating that lower levels of personal distress lead to higher subjective happiness through variation in intrinsic functional connectivity along a neural representation vs. modulation gradient

    Memory of my victory and your defeat: Contributions of reward- and memory-related regions to the encoding of winning events in competitions with others.

    Get PDF
    Social interactions enhance human memories, but little is known about how the neural mechanisms underlying episodic memories are modulated by rewarding outcomes in social interactions. To investigate this, fMRI data were recorded while healthy young adults encoded unfamiliar faces in either a competition or a control task. In the competition task, participants encoded opponents' faces in the rock-paper-scissors game, where trial-by-trial outcomes of Win, Draw, and Lose for participants were shown by facial expressions of opponents (Angry, Neutral, and Happy). In the control task, participants encoded faces by assessing facial expressions. After encoding, participants recognized faces previously learned. Behavioral data showed that emotional valence for opponents' Angry faces as the Win outcome was rated positively in the competition task, whereas the rating for Angry faces was rated negatively in the control task, and that Angry faces were remembered more accurately than Neutral or Happy faces in both tasks. fMRI data showed that activation in the medial orbitofrontal cortex (mOFC) paralleled the pattern of valence ratings, with greater activation for the Win than Draw or Lose conditions of the competition task, and the Angry condition of the control task. Moreover, functional connectivity between the mOFC and hippocampus was increased in Win compared to Angry, and the mOFC-hippocampus functional connectivity predicted individual differences in subsequent memory performance only in Win of the competition task, but not in any other conditions of the two tasks. These results demonstrate that the memory enhancement by context-dependent social rewards involves interactions between reward- and memory-related regions

    The Impact of Anxiety-Inducing Distraction on Cognitive Performance: A Combined Brain Imaging and Personality Investigation

    Get PDF
    BACKGROUND: Previous investigations revealed that the impact of task-irrelevant emotional distraction on ongoing goal-oriented cognitive processing is linked to opposite patterns of activation in emotional and perceptual vs. cognitive control/executive brain regions. However, little is known about the role of individual variations in these responses. The present study investigated the effect of trait anxiety on the neural responses mediating the impact of transient anxiety-inducing task-irrelevant distraction on cognitive performance, and on the neural correlates of coping with such distraction. We investigated whether activity in the brain regions sensitive to emotional distraction would show dissociable patterns of co-variation with measures indexing individual variations in trait anxiety and cognitive performance. METHODOLOGY/PRINCIPAL FINDINGS: Event-related fMRI data, recorded while healthy female participants performed a delayed-response working memory (WM) task with distraction, were investigated in conjunction with behavioural measures that assessed individual variations in both trait anxiety and WM performance. Consistent with increased sensitivity to emotional cues in high anxiety, specific perceptual areas (fusiform gyrus--FG) exhibited increased activity that was positively correlated with trait anxiety and negatively correlated with WM performance, whereas specific executive regions (right lateral prefrontal cortex--PFC) exhibited decreased activity that was negatively correlated with trait anxiety. The study also identified a role of the medial and left lateral PFC in coping with distraction, as opposed to reflecting a detrimental impact of emotional distraction. CONCLUSIONS: These findings provide initial evidence concerning the neural mechanisms sensitive to individual variations in trait anxiety and WM performance, which dissociate the detrimental impact of emotion distraction and the engagement of mechanisms to cope with distracting emotions. Our study sheds light on the neural correlates of emotion-cognition interactions in normal behaviour, which has implications for understanding factors that may influence susceptibility to affective disorders, in general, and to anxiety disorders, in particular

    Updating existing emotional memories involves the frontopolar/orbitofrontal cortex in ways that acquiring new emotional memories does not

    Get PDF
    In life, we must often learn new associations to people, places, or things we already know. The current fMRI study investigated the neural mechanisms underlying emotional memory updating. Nineteen participants first viewed negative and neutral pictures and learned associations between those pictures and other neutral stimuli, such as neutral objects and encoding tasks. This initial learning phase was followed by a memory updating phase, during which participants learned picture-location associations for old pictures (i.e., pictures previously associated with other neutral stimuli) and new pictures (i.e., pictures not seen in the first phase). There was greater frontopolar/orbito-frontal (OFC) activity when people learned picture–location associations for old negative pictures than for new negative pictures, but frontopolar OFC activity did not significantly differ during learning locations of old versus new neutral pictures. In addition, frontopolar activity was more negatively correlated with the amygdala when participants learned picture–location associations for old negative pictures than for new negative or old neutral pictures. Past studies revealed that the frontopolar OFC allows for updating the affective values of stimuli in reversal learning or extinction of conditioning [e.g., Izquierdo, A., & Murray, E. A. Opposing effects of amygdala and orbital PFC lesions on the extinction of instrumental responding in macaque monkeys. European Journal of Neuroscience, 22, 2341–2346, 2005]; our findings suggest that it plays a more general role in updating associations to emotional stimuli

    Perceptual processing advantages for trauma-related visual cues in post-traumatic stress disorder

    Get PDF
    BACKGROUND: Intrusive re-experiencing in post-traumatic stress disorder (PTSD) comprises distressing sensory impressions from the trauma that seem to occur 'out of the blue'. A key question is how intrusions are triggered. One possibility is that PTSD is characterized by a processing advantage for stimuli that resemble those that accompanied the trauma, which would lead to increased detection of such cues in the environment. METHOD: We used a blurred picture identification task in a cross-sectional (n=99) and a prospective study (n=221) of trauma survivors. RESULTS: Participants with acute stress disorder (ASD) or PTSD, but not trauma survivors without these disorders, identified trauma-related pictures, but not general threat pictures, better than neutral pictures. There were no group differences in the rate of trauma-related answers to other picture categories. The relative processing advantage for trauma-related pictures correlated with re-experiencing and dissociation, and predicted PTSD at follow-up. CONCLUSIONS: A perceptual processing bias for trauma-related stimuli may contribute to the involuntary triggering of intrusive trauma memories in PTSD

    Binding neutral information to emotional contexts: Brain dynamics of long-term recognition memory

    Get PDF
    There is abundant evidence in memory research that emotional stimuli are better remembered than neutral stimuli. However, effects of an emotionally charged context on memory for associated neutral elements is also important, particularly in trauma and stress-related disorders, where strong memories are often activated by neutral cues due to their emotional associations. In the present study, we used event-related potentials (ERPs) to investigate long-term recognition memory (1-week delay) for neutral objects that had been paired with emotionally arousing or neutral scenes during encoding. Context effects were clearly evident in the ERPs: An early frontal ERP old/new difference (300–500 ms) was enhanced for objects encoded in unpleasant compared to pleasant and neutral contexts; and a late central-parietal old/new difference (400–700 ms) was observed for objects paired with both pleasant and unpleasant contexts but not for items paired with neutral backgrounds. Interestingly, objects encoded in emotional contexts (and novel objects) also prompted an enhanced frontal early (180–220 ms) positivity compared to objects paired with neutral scenes indicating early perceptual significance. The present data suggest that emotional—particularly unpleasant—backgrounds strengthen memory for items encountered within these contexts and engage automatic and explicit recognition processes. These results could help in understanding binding mechanisms involved in the activation of trauma-related memories by neutral cues.This research was supported by a grant from the German Research Foundation (DFG, WE 4801/3-1) to Mathias Weymar at the University of Greifswald. Carlos Ventura-Bort (E-2013-15) was supported by the program for international stays of the Universitat Jaume I of Castellón, Spain

    Moderate threat causes longer lasting disruption to processing in anxious individuals

    Get PDF
    Anxiety is associated with increased attentional capture by threat. Previous studies have used simultaneous or briefly separated (<1 s) presentation of threat distractors and target stimuli. Here, we tested the hypothesis that high trait anxious participants would show a longer time window within which distractors cause disruption to subsequent task processing, and that this would particularly be observed for stimuli of moderate or ambiguous threat value. A novel temporally separated emotional distractor task was used. Face or house distractors were presented for 250 ms at short (∼1.6 s) or long (∼3 s) intervals prior to a letter string comprising Xs or Ns. Trait anxiety was associated with slowed identification of letter strings presented at long intervals after face distractors with part surprise/part fear expressions. In other words, these distractors had an impact on high anxious individuals' speed of target identification seconds after their offset. This was associated with increased activity in the fusiform gyrus and amygdala and reduced dorsal anterior cingulate recruitment. This pattern of activity may reflect impoverished recruitment of reactive control mechanisms to damp down stimulus-specific processing in subcortical and higher visual regions. These findings have implications for understanding how threat-related attentional biases in anxiety may lead to dysfunction in everyday settings where stimuli of moderate, potentially ambiguous, threat value such as those used here are fairly common, and where attentional disruption lasting several seconds may have a profound impact

    Emotional valence and arousal affect reading in an interactive way: neuroimaging evidence for an approach-withdrawal framework

    Get PDF
    A growing body of literature shows that the emotional content of verbal material affects reading, wherein emotional words are given processing priority compared to neutral words. Human emotions can be conceptualised within a two-dimensional model comprised of emotional valence and arousal (intensity). These variables are at least in part distinct, but recent studies report interactive effects during implicit emotion processing and relate these to stimulus-evoked approach-withdrawal tendencies. The aim of the present study was to explore how valence and arousal interact at the neural level, during implicit emotion word processing. The emotional attributes of written word stimuli were orthogonally manipulated based on behavioural ratings from a corpus of emotion words. Stimuli were presented during an fMRI experiment while 16 participants performed a lexical decision task, which did not require explicit evaluation of a word's emotional content. Results showed greater neural activation within right insular cortex in response to stimuli evoking conflicting approach-withdrawal tendencies (i.e., positive high-arousal and negative low-arousal words) compared to stimuli evoking congruent approach vs. withdrawal tendencies (i.e., positive low-arousal and negative high-arousal words). Further, a significant cluster of activation in the left extra-striate cortex was found in response to emotional than neutral words, suggesting enhanced perceptual processing of emotionally salient stimuli. These findings support an interactive two-dimensional approach to the study of emotion word recognition and suggest that the integration of valence and arousal dimensions recruits a brain region associated with interoception, emotional awareness and sympathetic functions
    corecore