136 research outputs found

    Antigenotoxic Effect Of Ferulic Acid In 7,12-Dimethyl Benz(A)- Anthracene (Dmba) Induced Genotoxicity

    Get PDF
    The antigenotoxic effect of ferulic acid was carried out by evaluating the cytogenetic markers, the micronuclei frequency and chromosomal aberrations, in the bone marrow of hamsters in 7,12- dimethylbenz(a)anthracene (DMBA) induced genotoxicity. Genotoxicity was induced in experimental hamsters by single intraperitoneal injection of DMBA (30mg kg-1 b.w). Pretreatment of ferulic acid orally at a dose of 40mg kg-1 b.w for five days significantly reduced the frequency of micronucleated polychromatic erythrocytes (MnPCEs) and the percentage of chromosomal aberrations in hamster\'s bone marrow. Our results thus suggest that ferulic acid has potent antigenotoxic effect in DMBA induced genotoxicity in golden Syrian hamsters. Keywords: DMBA, ferulic acid, genotoxicity, chromosomal aberrations, lipid peroxidation, antioxidants, hamster.African Journal of Traditional and Complementary Medicine Vol. 5 (1) 2008: pp. 32-3

    Heterologous production of curcuminoids

    Get PDF
    Curcuminoids, components of the rhizome of turmeric, show several beneficial biological activities, including anticarcinogenic, antioxidant, anti-inflammatory, and antitumor activities. Despite their numerous pharmaceutically important properties, the low natural abundance of curcuminoids represents a major drawback for their use as therapeutic agents. Therefore, they represent attractive targets for heterologous production and metabolic engineering. The understanding of biosynthesis of curcuminoids in turmeric made remarkable advances in the last decade, and as a result, several efforts to produce them in heterologous organisms have been reported. The artificial biosynthetic pathway (e.g., in Escherichia coli) can start with the supplementation of the amino acid tyrosine or phenylalanine or of carboxylic acids and lead to the production of several natural curcuminoids. Unnatural carboxylic acids can also be supplemented as precursors and lead to the production of unnatural compounds with possibly novel therapeutic properties. In this paper, we review the natural conversion of curcuminoids in turmeric and their production by E. coli using an artificial biosynthetic pathway. We also explore the potential of other enzymes discovered recently or already used in other similar biosynthetic pathways, such as flavonoids and stilbenoids, to increase curcuminoid yield and activity.We acknowledge financial support from the Strategic Project PEst-OE/EQB/LA0023/2013, project reference RECI/BBB-EBI/0179/2012 (project number FCOMP-01-0124-FEDER-027462), project SYNBIOBACTHER (PTDC/EBB-BIO/102863/2008), and a doctoral grant (SFRH/BD/51187/ 2010) to J. L. Rodrigues, funded by Fundacao para a Ciencia e a Tecnologia. We thank the MIT-Portugal Program for support given to J. L. Rodrigues

    BounceBack™ capsules for reduction of DOMS after eccentric exercise: a randomized, double-blind, placebo-controlled, crossover pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Delayed onset muscle soreness (DOMS) is muscle pain and discomfort experienced approximately one to three days after exercise. DOMS is thought to be a result of microscopic muscle fiber tears that occur more commonly after eccentric exercise rather than concentric exercise. This study sought to test the efficacy of a proprietary dietary supplement, BounceBack™, to alleviate the severity of DOMS after standardized eccentric exercise.</p> <p>Methods</p> <p>The study was a randomized, double-blind, placebo-controlled, crossover study. Ten healthy community-dwelling untrained subjects, ranging in age from 18–45 years, were enrolled. Mean differences within and between groups were assessed inferentially at each data collection time-point using t-tests for all outcome measures.</p> <p>Results</p> <p>In this controlled pilot study, intake of BounceBack™ capsules for 30 days resulted in a significant reduction in standardized measures of pain and tenderness post-eccentric exercise compared to the placebo group. There were trends towards reductions in plasma indicators of inflammation (high sensitivity C-reactive protein) and muscle damage (creatine phosphokinase and myoglobin).</p> <p>Conclusion</p> <p>BounceBack™ capsules were able to significantly reduce standardized measures of pain and tenderness at several post-eccentric exercise time points in comparison to placebo. The differences in the serological markers of DOMS, while not statistically significant, appear to support the clinical findings. The product appears to have a good safety profile and further study with a larger sample size is warranted based on the current results.</p

    Magnetic Resonance Water Proton Relaxation in Protein Solutions and Tissue: T1ρ Dispersion Characterization

    Get PDF
    BACKGROUND: Image contrast in clinical MRI is often determined by differences in tissue water proton relaxation behavior. However, many aspects of water proton relaxation in complex biological media, such as protein solutions and tissue are not well understood, perhaps due to the limited empirical data. PRINCIPAL FINDINGS: Water proton T(1), T(2), and T(1rho) of protein solutions and tissue were measured systematically under multiple conditions. Crosslinking or aggregation of protein decreased T(2) and T(1rho), but did not change high-field T(1). T(1rho) dispersion profiles were similar for crosslinked protein solutions, myocardial tissue, and cartilage, and exhibited power law behavior with T(1rho)(0) values that closely approximated T(2). The T(1rho) dispersion of mobile protein solutions was flat above 5 kHz, but showed a steep curve below 5 kHz that was sensitive to changes in pH. The T(1rho) dispersion of crosslinked BSA and cartilage in DMSO solvent closely resembled that of water solvent above 5 kHz but showed decreased dispersion below 5 kHz. CONCLUSIONS: Proton exchange is a minor pathway for tissue T(1) and T(1rho) relaxation above 5 kHz. Potential models for relaxation are discussed, however the same molecular mechanism appears to be responsible across 5 decades of frequencies from T(1rho) to T(1)

    One-Step UV-Induced Synthesis of Polypyrrole/Ag Nanocomposites at the Water/Ionic Liquid Interface

    Get PDF
    Polpyrrole (PPy)/Ag nanocomposites were successfully synthesized at the interface of water and ionic liquid by one-step UV-induced polymerization. Highly dispersed PPy/Ag nanoparticles were obtained by controlling the experimental conditions. The results of Fourier-transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy revealed that the UV-induced interface polymerization leaded to the formation of PPy incorporating silver nanoparticles. It was also found that the electrical conductivity of PPy/Ag nanocomposite was about 100 times higher than that of pure PPy

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Loss of Let-7 Up-Regulates EZH2 in Prostate Cancer Consistent with the Acquisition of Cancer Stem Cell Signatures That Are Attenuated by BR-DIM

    Get PDF
    The emergence of castrate-resistant prostate cancer (CRPC) contributes to the high mortality of patients diagnosed with prostate cancer (PCa), which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs). Recent studies have shown that deregulated expression of microRNAs (miRNAs) contributes to the initiation and progression of PCa. Among several known miRNAs, let-7 family appears to play a key role in the recurrence and progression of PCa by regulating CSCs; however, the mechanism by which let-7 family contributes to PCa aggressiveness is unclear. Enhancer of Zeste homolog 2 (EZH2), a putative target of let-7 family, was demonstrated to control stem cell function. In this study, we found loss of let-7 family with corresponding over-expression of EZH2 in human PCa tissue specimens, especially in higher Gleason grade tumors. Overexpression of let-7 by transfection of let-7 precursors decreased EZH2 expression and repressed clonogenic ability and sphere-forming capacity of PCa cells, which was consistent with inhibition of EZH2 3′UTR luciferase activity. We also found that the treatment of PCa cells with BR-DIM (formulated DIM: 3,3′-diindolylmethane by Bio Response, Boulder, CO, abbreviated as BR-DIM) up-regulated let-7 and down-regulated EZH2 expression, consistent with inhibition of self-renewal and clonogenic capacity. Moreover, BR-DIM intervention in our on-going phase II clinical trial in patients prior to radical prostatectomy showed upregulation of let-7 consistent with down-regulation of EZH2 expression in PCa tissue specimens after BR-DIM intervention. These results suggest that the loss of let-7 mediated increased expression of EZH2 contributes to PCa aggressiveness, which could be attenuated by BR-DIM treatment, and thus BR-DIM is likely to have clinical impact

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal “attention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia
    corecore