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SUMMARY present in such mixtures include demethoxycurcumin and bisde-

Curcuminoids, components of the rhizome of turmeric, show
several beneficial biological activities, including anticarcinogenic,
antioxidant, anti-inflammatory, and antitumor activities. Despite
their numerous pharmaceutically important properties, the low
natural abundance of curcuminoids represents a major drawback
for their use as therapeutic agents. Therefore, they represent at-
tractive targets for heterologous production and metabolic engi-
neering. The understanding of biosynthesis of curcuminoids in
turmeric made remarkable advances in the last decade, and as a
result, several efforts to produce them in heterologous organisms
have been reported. The artificial biosynthetic pathway (e.g., in
Escherichia coli) can start with the supplementation of the amino
acid tyrosine or phenylalanine or of carboxylic acids and lead to
the production of several natural curcuminoids. Unnatural car-
boxylic acids can also be supplemented as precursors and lead to
the production of unnatural compounds with possibly novel ther-
apeutic properties. In this paper, we review the natural conversion
of curcuminoids in turmeric and their production by E. coli using
an artificial biosynthetic pathway. We also explore the potential of
other enzymes discovered recently or already used in other similar
biosynthetic pathways, such as flavonoids and stilbenoids, to in-
crease curcuminoid yield and activity.

INTRODUCTION

urcuminoids are polyphenolic compounds, more specifically

diarylheptanoids (C4-C,-Cy), isolated from the rhizome of
turmeric (Curcuma longa Linn.), which gives it its yellow color (1).
These compounds have been used in traditional medicine and as
food additives, especially as a curry spice, preservative, coloring
(E100), and flavoring agent in Asian countries such as China and
India (2, 3). The rhizome of turmeric contains a mixture of cur-
cuminoids in which curcumin, also known as diferuloyl-methane,
is the main active chemical constituent (4). Other curcuminoids
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methoxycurcumin. Curcuminoids are abundantly present in C.
longa but also occur in other Curcuma species. However, since
different Curcuma species are difficult to distinguish due to their
similar morphologies and their different names given in Latin and
by Japanese, Chinese, and Indian cultures, pharmacological stud-
ies are very scarce (5). Nevertheless, curcumin, and in some cases
bisdemethoxycurcumin and demethoxycurcumin, has also been
isolated from Curcuma mangga (6, 7), Curcuma xanthorrhiza (8,
9), Curcuma zedoaria (10, 11), Curcuma phaeocaulis (5), Curcuma
aromatica (5), and other species such as Etlingera elatior (12).
Other type of complex curcuminoids, cassumunin and cassumu-
narin, were isolated from Zingiber cassumunar (13, 14). Curcumi-
noids, depending on the cultivar, constitute 2 to 4% of the dry
weight of the dried rhizome (3, 15, 16). The commercial-grade
curcumin is isolated from the powdered dry rhizome of C. longa
and consists of a mixture of curcumin (~77%), demethoxycur-
cumin (~18%), and bisdemethoxycurcumin (~5%) (17, 18).
Generally, the term curcumin is used to represent all the three
curcuminoids found in the turmeric extract.

“Biological” Relevance of Curcuminoids

Curcumin was discovered and isolated almost 2 centuries ago
by Vogel and Pelletier (19); however, its biological properties
were not identified until the middle of the 20th century, when
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TABLE 1 Some therapeutic applications of curcumin/curcuminoids

Type of biological
activity Therapeutic effects” References
Anticancer Suppress cancer cell proliferation—inhibit NF-kB and consequently downregulate NF-kB-regulated gene products 30-40
such as COX-2 protein and other proteins that are associated with carcinogenesis, tumor initiation, promotion,
and metastasis in a wide variety of cancers
Induce apoptosis (programmed cell death type I) by activation of caspase-8, BID cleavage, cytochrome c release, and
downregulation of Bcl-2 expression
Induce autophagy (programmed cell death type IT) regulated by simultaneous inhibition of the Akt/mTOR/p70S6K
pathway and stimulation of the ERK1/2 pathway
Cholesterol lowering Decrease LDL cholesterol, total cholesterol, and triglycerides and raise HDL (good) cholesterol 41,42
Upregulate CYP7AL, a rate-limiting enzyme in the biosynthesis of bile acid from cholesterol in liver that is involved
in the decrease of cholesterol; this induction of CYP7A1 increases the conversion of cholesterol into bile acids and
its excretion
Antidiabetic Suppress expression of hepatic gluconeogenesis genes (PEPCK and G6Pase) similarly to insulin 43-46
Activate AMPK and downregulate ACC; also implicated in glucose transport and shown to suppress the key
gluconeogenic genes PEPCK and G6Pase
Anti-inflammatory Inhibit NF-kB, COX-2, 5-LOX, iNOS, and other molecules that mediate inflammatory effect 40, 47-52
Antioxidant Protect biomembranes against lipid peroxidative damage by scavenging the reactive free radicals involved in the 31, 49, 50,
peroxidation 53-55
Anti-Alzheimer’s Reduce amyloid plaques and accumulated 3-amyloid aggregates 56-59
disease Suppress pro-oxidant, proinflammatory, and JNK-mediated toxic amyloid aggregate effects
Anti-HIV Inhibit HIV replication 60-62
Inhibit HIV-1 and HIV-2 proteases
Wound healing Protect tissue from oxidative damage due to their antioxidant properties 63, 64
Increase formation of granulation tissue and biosynthesis of extracellular matrix proteins, especially lower in
diabetic wounds
Anti-Parkinson’s Reduce aggregation of a-synuclein 65, 66

disease

Protect dopaminergic neurons from apoptosis by inhibition of JNK

@ NF-kB, nuclear transcription factor kB; COX-2, cyclooxygenase-2; BID, BH3-interacting domain death agonist; LDL, low-density lipoprotein; HDL, high-density lipoprotein;
CYP7A1, cholesterol 7a-hydroxylase; 5-LOX, 5-lipoxygenase; iNOS, inducible nitric oxide synthase; JNK, Jun N-terminal kinase.

Schraufstitter and Bernt (20) reported its antibacterial activity.
Since then, the biosynthesis and properties of curcumin and other
curcuminoids have attracted much interest from the scientific
community. Besides antibacterial potential (21-23), these com-
pounds present several properties that are beneficial to human
health (Table 1). Therapeutic properties of curcuminoids have
been reviewed in several papers (2, 17, 18, 24-29).

Even though curcumin, demethoxycurcumin, and bisdeme-
thoxycurcumin have been extensively studied, whether the three
analogues exhibit equal therapeutic activity has not been com-
pletely elucidated. Although curcumin was found to be most po-
tent/active in some systems (55), in other cases it was concluded
that the activities of the three analogues are very similar (67), while
in other systems bisdemethoxycurcumin was found to exhibit the
highest cytotoxic activity (10, 31, 32, 68). Furthermore, the mix-
ture of all three curcuminoids has been suggested to have a more
effective bioprotectant activity than any one alone due to syner-
gistic effects (69).

Bioavailability of Curcuminoids

Nowadays, curcumin is considered a safe, novel, and promising
drug for the prevention and treatment of cancer, chronic inflam-
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mation, and other diseases (70, 71). Several clinical trials have
been conducted to confirm its effectiveness (36, 70, 72—74) and
have revealed that curcumin is safe for humans at a high oral
dosage of 10 to 12 g per day (70, 74).

In August 2009, Sabinsa Corporation received a “generally re-
garded as safe” (GRAS) status for the branded ingredient Curcu-
min C3 Complex (69) after a review of safety and toxicology data
by Soni & Associates, Inc. In February 2013, due to curcumin’s
health benefits and the results obtained in clinical trials, the U.S.
Food and Drug Administration issued a “no-objection letter” to
Sabinsa for the self-affirmed GRAS status of its Curcumin C3
Complex for use in food and beverages (75).

Although the therapeutic applications of curcuminoids appear
very promising, to date clinical trials are still preliminary, and the
true value of curcumin as a therapeutic agent for human diseases
remains elusive (70). It is imperative that well-designed clinical
trials, with improved formulations of curcuminoids or novel
routes of administration (70), be conducted in the near future.
Animal studies and phase I and II clinical trials conducted so far
showed that curcumin and other curcuminoids exhibit a poor
bioavailability, which is the main reason why curcumin has not yet
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been approved as a therapeutic agent (76). The poor bioavailabil-
ity of curcuminoids appears to be due to their poor absorption
and distribution, rapid metabolism, and rapid systemic elimina-
tion (excretion) (76). These compounds are insoluble and unsta-
ble in water, and, in general, after administration their presence in
serum is very low or undetectable (76). Several approaches have
been evaluated to improve the bioavailability of curcumin and the
other curcuminoids. The use of adjuvants that can block metabo-
lism of the curcuminoids is one of the most studied ways to im-
prove their bioavailability (77). For example, the coadministra-
tion of piperine proved to highly increase curcumin serum
concentration, absorption, and bioavailability in rats and hu-
mans (76, 78). Other promising approaches to improve curcu-
min bioavailability include the use of liposomes (79-81),
micelles (82-84), nanoparticles (25, 85-91), phospholipid
complexes (92, 93), and curcuminoid derivatives and struc-
tural analogues (58, 94, 95).

An efficient application of curcumin requires specific lesion-
oriented delivery methods to guarantee the needed concentra-
tions in tissues. Noninvasive and invasive drug delivery methods
can be used (96). Noninvasive methods are usually painless and
easy to use, and the most common routes of administration in-
clude peroral, topical, and transmucosal (nasal, vaginal, rectal,
and urethral) routes (i.e., oral lozenges, vaginal suppository tab-
lets, and pomades). Invasive methods penetrate the cutaneous
barrier to reach either the circulatory system or the diseased tissue
and include, for example, intravenous, intramuscular, and subcu-
taneous methods.

To solve the curcuminoid bioavailability problem, new meth-
ods for its production and delivery at the intended body site need
to be developed. According to Hsu and Cheng (70) it is very likely
that to obtain active curcumin concentrations in tissues, it is nec-
essary to apply the drugs locally or topically using a targeted drug
delivery system. Controlled in situ drug delivery and production,
using combinatorial biosynthesis and a host microorganism, is a
very promising approach. In this paper we review the production
of curcuminoids in C. longa and by Escherichia coli using an arti-
ficial biosynthetic pathway. We also suggest new approaches using
metabolic engineering and synthetic biology tools to increase the
curcuminoid yield and activity.

CURCUMINOID PRODUCTION IN CURCUMA LONGA

Curcuminoids are produced by type III polyketide synthases
(PKS) in plants and consist of two phenylpropanoid units chem-
ically derived from the amino acid phenylalanine and connected
by a central carbon unit derived from malonyl-coenzyme A (ma-
lonyl-CoA) (97). Until the work by Ramirez-Ahumada et al. (98),
very little was known about curcuminoid biosynthesis in tur-
meric. Those authors identified the enzymes in the curcuminoid
biosynthetic pathway and confirmed the involvement of the phe-
nylpropanoid pathway in the production of these compounds in
plants. The first enzyme identified was phenylalanine ammonia lyase
(PAL), which is involved in amino acid metabolism, but also in the
biosynthesis of plant natural products, as the branch point between
primary and secondary metabolism (99). Other enzymes identified
include p-coumaroyl shikimate transferase (CST), p-coumaroyl qui-
nate transferase (CQT), caffeic acid O-methyltransferase (COMT),
and caffeoyl-CoA O-methyltransferase (CCOMT or CCoAOMT).
The results for polyketide synthase (PKS) in in vitro assays showed
detectable curcuminoid synthase activity in the extracts from tur-
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meric. However, the authors were not able to characterize the
enzyme(s) responsible for this reaction using anion-exchange col-
umn chromatography (98). Furthermore, Katsuyama et al. (97)
proposed a pathway for curcuminoid biosynthesis in the herb C.
longa, which included two type III PKS (Fig. 1). One of the PKS,
named diketide-CoA synthase (DCS), catalyzes the formation of
feruloyl-diketide-CoA from feruloyl-CoA and malonyl-CoA. The
other PKS, named curcumin synthase 1 (CURS1), catalyzes two
reactions. First, it catalyzes the hydrolysis of feruloyl-diketide-
CoA in a B-keto acid. Second, using the B-keto acid and other
molecule of feruloyl-CoA, it catalyzes the formation of curcumin.
B-Keto acid is not detected in vitro because it is not released from
the enzyme (100, 101). Both DCS and CURSI1 accept p-couma-
royl-CoA, but at low efficiency, and are capable of synthesizing
bisdemethoxycurcumin. The asymmetric curcuminoid deme-
thoxycurcumin can also be produced from p-coumaroyl-
diketide-CoA and feruloyl-CoA or from feruloyl-diketide-CoA
and p-coumaroyl-CoA. DCS and CURSI share 62% amino acid
sequence identity and a conserved Cys-His-Asn catalytic triad
(97).

The same authors identified and characterized two other type
III PKS from turmeric, named CURS2 and CURS3 (102). In vitro
analysis revealed that CURS2 preferred feruloyl-CoA as the sub-
strate, while CURS3 used both feruloyl-CoA and p-coumaroyl-
CoA (Table 2). CURS2 and CURS3 share 81% identity, and
CURS2 and CURS3 share 78% and 81% identity with CURS1 and
62% and 66% with DCS, respectively. The existence of these three
curcumin synthases with distinctive substrate specificities might
explain the distribution of the three curcuminoids (curcumin,
demethoxycurcumin, and bisdemethoxycurcumin) in C. longa.
Before it was known that C. longa had different CURSs with dif-
ferent specificities and that they could utilize both CoA esters of
coumaric acid and ferulic acid, Ramirez-Ahumada et al. (98) pro-
posed that bisdemethoxycurcumin (synthesized only from cou-
maroyl-CoA) would be transformed in demethoxycurcumin and
then in curcumin by hydroxylation followed by O-methylation.
This hypothesis was never confirmed and was almost discarded
after the finding of curcumin synthase, which was able to use
feruloyl-CoA to produce curcumin.

In addition to the well-known curcuminoids, other diarylhep-
tanoids can also be found in turmeric. The biosynthetic pathway
of these diarylheptanoids has not yet been elucidated and several
routes have been hypothesized. Xie et al. (104), after using meta-
bolic profiling analysis, proposed that the biosynthetic pathway
belongs to a different metabolite module (Fig. 2) and that they are
not intermediates in curcuminoid biosynthesis that belong to an-
other biosynthetic module (Fig. 1).

According to Xie et al. (104), caffeoyl-CoA in combination
with coumaroyl-CoA or feruloyl-CoA is used to produce 3'-hy-
droxy-bisdemethoxycurcumin and 3’-hydroxy-demethoxycur-
cumin, respectively. The polyketide synthases responsible for
these reactions have specificities different from the ones from the
other module (Fig. 1), which cannot use caffeoyl-CoA as a sub-
strate and produce the major curcuminoids. Furthermore, Xie et
al. (104) reported that some PKS, instead of using caffeoyl-CoA,
use 5-hydroxy-feruloyl-CoA or feruloyl-CoA and coumaroyl-
CoA to produce 5'-hydroxy-curcumin and 5’-hydroxy-deme-
thoxycurcumin, respectively.

Dihydrocurcuminoids, which are dihydro derivatives of curcumi-
noids (103), have also been identified in C. longa, for example, di-
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FIG 1 Curcuminoid biosynthetic pathway in Curcuma longa. Cinnamic acid is synthesized from phenylalanine by phenylalanine ammonia lyase (PAL) and
converted to coumaric acid by cinnamate-4-hydroxylase (C4H). Then, 4-coumarate-CoA ligase (4CL) converts coumaric acid to coumaroyl-CoA, and p-
coumaroyl shikimate transferase (CST), p-coumaroyl 5-O-shikimate 3'-hydroxylase (CS3"H), and caffeoyl-CoA O-methyltransferase (CCoAOMT) convert it to
feruloyl-CoA. Coumaroyl-CoA and feruloyl-CoA are then converted by diketide-CoA synthase (DCS) to diketide-CoAs by condensation with malonyl-CoA. In
the end, curcumin synthases (CURSs) catalyze the formation of curcuminoids by condensing the diketide-CoAs with coumaroyl-CoA and feruloyl-CoA.
Depending on the combination, different curcuminoids are produced, namely, bisdemethoxycurcumin, demethoxycurcumin, and curcumin. The route indi-
cated by dashed arrows corresponds to a less central phenylpropanoid pathway and may not occur in vivo in C. longa.
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TABLE 2 Kinetic parameters of DCS, CURS1, CURS2, and CURS3 from C. longa

GenBank ke K,y
EC no. Enzyme* accession no. Substrate K, (uM) ke 571 (s7'M™h Reference
2.3.1.218 DCS AB495006 Feruloyl-CoA - 0.020 - 97¢
Malonyl-CoA 8.4 0.011 1,329
2.3.1.217/2.3.1.219 CURS1 AB495007 Feruloyl-CoA 18 0.018 1,001 97
Coumaroyl-CoA 189 0.014 75
CURS2 AB506762 Feruloyl-CoA 4.3 0.007 1,622 102
Coumaroyl-CoA 89 0.016 176
CURS3 AB506763 Feruloyl-CoA 2.2 0.003 2,017 102
Coumaroyl-CoA 3.4 0.006 1,742

“ DCS, diketide-CoA synthase; CURS, curcumin synthase/demethoxycurcumin synthase.

b Kinetic properties of DCS for feruloyl-CoA were calculated according to its allosteric properties (sigmoidal curve). The S, ko, and Hill slope values were 46 M, 0.02 s~ !, and

1.8, respectively.

hydrodemethoxycurcumin, dihydrobisdemethoxycurcumin, and
dihydrocurcumin. Kita et al. (105) considered two hypotheses for
the production of these dihydrocurcuminoids. In one hypothesis,
an enzyme accepts one dihydrophenylpropanoid and one phenyl-
propanoid instead of the two phenylpropanoids used in the pro-
duction of the major curcuminoids. The other hypothesis consid-
ers the reduction of a double bond of the major curcuminoids by
a reductase.

HETEROLOGOUS PRODUCTION OF CURCUMINOIDS

Curcuminoids, like many plant secondary metabolites, accumu-
late at low quantities over very long growth periods in plants and
are difficult and expensive to isolate and hard to synthesize chem-
ically. These reasons, in combination with the wide benefits of
curcuminoids and their application potential, have led to an in-
creased interest in the last 10 years, and attempts to implement the
heterologous biosynthesis of curcuminoids have been reported
(106). One of the approaches to produce curcuminoids is combi-
natorial biosynthesis, which consists of combining enzyme-en-
coding genes from different species and designing a new set of
gene clusters to produce bioactive compounds in a heterologous
host (107, 108). Heterologous production of curcuminoids in mi-

0 o)
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croorganisms is highly advantageous, since they can grow on in-
expensive substrates and, compared to plants, are easier to manip-
ulate and have very rapid production cycles (109), allowing
curcuminoids to be produced faster and maybe in larger amounts.
Large-scale microbial fermentation and downstream purification
can also be more easily attained, since microbes usually do not
have competing pathways to transgenic metabolism (110). Heter-
ologous production in plants has the advantage of requiring the
introduction of only one or two genes, since the other genes from
the phenylpropanoid pathway are already present in the plant
kingdom (111). Also, the engineering of plants can lead to an
increase in antioxidant activities and in disease resistance in the
transgenic plants and can extend the postharvest shelf life of some
fruits, such as in cases where resveratrol is engineered in plants
(111, 112). However, introducing genetically modified crops has a
high cost, and there is public resistance to the acceptance of these
food products. Regulations for genetically modified microorgan-
isms are simpler than those for crops (112). Thus, taking into
consideration all the pros and cons, the commercial application of
heterologous production of curcuminoids by microorganisms is
more attractive.
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FIG 2 Biosynthetic production pathway of some diarylheptanoids in Curcuma longa. CST, coumaroyl shikimate transferase; CS3'H, p-coumaroyl 5-O-

shikimate 3’-hydroxylase; CCOAOMT, caffeoyl-CoA O-methyltransferase.
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Although DCS and CURS are the enzymes responsible for the
last steps of the curcuminoid pathway in C. longa, these enzymes
were discovered only in 2009 (97). At that time, Katsuyama et al.
(106) had already implemented in E. coli an artificial biosynthetic
pathway to produce curcuminoids. Those authors identified a
type III PKS from rice, Oryza sativa. This enzyme was named
curcuminoid synthase (CUS) (GenBank accession number
AK109558) and was the first identified type III PKS capable of
catalyzing the “one-pot” synthesis of bisdemethoxycurcumin
from two molecules of coumaroyl-CoA (starter substrate) and
one molecule of malonyl-CoA (extender substrate). CUS itself
catalyzes both steps catalyzed by DCS and CURS in C. longa, dis-
obeying the traditional model of head-to-tail polyketide assembly
by only catalyzing condensation reactions without a cyclization
(113). Morita et al. (114) proposed that CUS has a unique down-
ward-expanding active-site architecture that allows accommoda-
tion of two coumaroyl molecules (coumaroyl-CoA and couma-
royl B-keto acid) and one malonyl-CoA molecule and a putative
nucleophilic water molecule that forms hydrogen bond networks
at the active-site center. These unique structural features are the
basis for the “one-pot” synthesis of bisdemethoxycurcumin.
Thus, the use of CUS in the artificial biosynthetic production of
curcuminoids is simpler than the DCS/CURS system. The Cys-
His-Asn catalytic triad is conserved in CUS (113, 114), and the
enzyme shares 51% amino acid identity with DCS and 45% iden-
tity with CURSL1. Although CUS also accepts cinnamoyl-CoA and
feruloyl-CoA as a substrate to produce dicinnamoylmethane and
curcumin, it prefers coumaroyl-CoA. To date, curcuminoids have
not been reported in O. sativa and CUS activity in vivo remains to
be identified. Hypothetically, the rice CUS may produce curcumi-
noids, albeit in undetectable amounts (100). In addition to cur-
cuminoid synthesis, CUS also proved to be able to produce gin-
gerol derivatives (100, 115).

The report of the artificial curcuminoid biosynthetic pathway
in E. coli, designed by Katsuyama et al. (106), is the first study
demonstrating the production of curcuminoids in a heterologous
organism. This pathway (Fig. 3) starts with the reaction of phenyl-
alanine ammonia lyase (PAL) from the yeast Rhodotorula rubra,
which converts L-phenylalanine to cinnamic acid. This enzyme
was previously shown to have tyrosine ammonia lyase (TAL) ac-
tivity (116, 117). Using this enzymatic feature, tyrosine can be
used as a precursor and further converted to coumaric acid. The
carboxylic acids are converted to CoA esters by 4-coumarate-CoA
ligase (4CL) from Lithospermum erythrorhizon (Le4CL1) and then
to curcuminoids by CUS from O. sativa. Acetyl-CoA carboxylase
(ACC) from Corynebacterium glutamicum was also overexpressed
to increase the intracellular pool of malonyl-CoA in E. coli. The
enzymes and microorganisms in this pathway were chosen after
the successful production of flavonoid and stilbene compounds,
whose pathway included some of the same enzymes (118, 119).
The recombinant E. coli was cultivated in M9 medium with the
supplementation of tyrosine or/and phenylalanine (3 mM), the
precursors of the phenylpropanoid pathway. Bisdemethoxycur-
cumin, dicinnamoylmethane, and cinnamoyl-p-coumaroylmeth-
ane were produced. In another experiment, phenylpropanoid ac-
ids (p-coumaric acid, cinnamic acid, and ferulic acid [1 mM])
were directly supplied to test a system with only 4CL, CUS, and
ACC genes. The goal was to increase the CoA ester concentration
in the cell by removing the PAL step where the amino acids are
converted to carboxylic acids. E. coli produced 91 * 23 mg/liter of
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bisdemethoxycurcumin, 84 = 15 mg/liter of dicinnamoylmeth-
ane, and 113 = 22 mg/liter of curcumin. Furthermore, rice bran
pitch was used for curcumin production. Rice bran pitch is an
industrial waste obtained from rice bran in the production of rice
oil (120). It is known that rice bran pitch is rich in ferulic acid.
Starting with 11 * 1.4 mg of ferulic acid extracted from 500 mg of
rice bran pitch, the E. coli strain engineered by Katsuyama et al.
(106), harboring 4CL, CUS, and ACC genes, produced 57 * 21
mg/liter of curcumin.

Using the same pathway (4CL, CUS, and ACC), 15 asymmetric
curcuminoids (9 of these compounds are not found in nature)
were produced by adding two different unnatural carboxylic acids
simultaneously (analogues of p-coumaric acid) (121). This pre-
cursor-directed biosynthesis system is possible due to the unusu-
ally broad, promiscuous substrate specificities of the enzymes in-
volved in the pathway, which allows production of unnatural
novel polyketides. This way of producing unnatural curcuminoids
may provide novel drug candidates.

Curcuminoid production in E. coli was also used to develop a
reporter assay for the screening of PAL enzyme efficiency (122).
PALs were coexpressed with 4CL1 from Arabidopsis thaliana
(At4CL1) and CUS from O. sativa in E. coli. The yellow color of the
product allowed the development of a microplate-based assay to
measure dicinnamoylmethane. Using this system, the authors
screened three PALs (PAL1, PAL3, and PAL4) from Trifolium
pratense. PAL1 showed the best results by producing 0.36 g/liter of
dicinnamoylmethane. This combination of enzymes allowed pro-
duction of around 3.4 times more dicinnamoylmethane from
phenylalanine than that obtained by Katsuyama et al. (106) using
PAL from R. rubra and 4CL from L. erythrorhizon. Furthermore,
the ACC enzyme was not used, which means that, at least in this
case, the naturally present malonyl-CoA was enough for a successful
production. In addition, by feeding 2-fluorol-phenylalanine, Wang
and colleagues produced three curcuminoids: dicinnamoylmethane,
6,6'-difluoro-dicinnamoylmethane, and 6-fluoro-dicinnamoyl-
methane, a new unnatural compound (122).

OPTIMIZATION OF THE CURCUMINOID HETEROLOGOUS
PATHWAY AND ALTERNATIVE HOSTS

The success of a biosynthetic pathway depends significantly on the
use of appropriate synthetic enzymes. Curcuminoid production
can be improved by exploring alternative enzymes from other
microorganisms compatible with the heterologous host that allow
higher curcuminoid yield or more specific enzymes that allow
production of the desired curcuminoid with fewer undesired by-
products.

To our knowledge, heterologous synthesis of curcuminoids
has so far been accomplished only in E. coli. Saccharomyces cerevi-
siae, which is also easy to grow and manipulate and is well char-
acterized, has been used only to produce other polyketides, such as
resveratrol, naringenin, and pinocembrim, among others (Table
3) (115, 123-132). However, as a eukaryote, S. cerevisiae presents
some unique advantages over E. coli for the design and construc-
tion of a biosynthetic pathway for the production of curcumi-
noids. First, it has a food-grade status (GRAS organism) which
allows its use in human nutrition and pharmaceuticals. Further-
more, S. cerevisiae does not lack the posttranslational machinery
like E. coli, having intracellular compartments similar to those of
plant cells (126). Also, membrane proteins such as cytochrome
P450 (C4H) would be more adequately expressed in a eukaryotic
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organism. These questions have been properly addressed and re-
viewed recently (133), and emerging strategies have been em-
ployed to overcome the problems that occur when expressing eu-
karyotic proteins in a bacterial host. Nevertheless, in some cases
the use of a eukaryotic organism like S. cerevisiae would be sim-
pler.

Tyrosine/Phenylalanine-Overproducing Strains

E. coliand S. cerevisiaelack the CoA-ester starter substrates needed
for curcuminoid production, and the naturally produced amino
acids (phenylalanine and tyrosine) that are converted to the phe-
nylpropanoic acids are not produced in sufficient amounts, which
represents a limiting step (126, 140, 141). Although the amino
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acids and phenylpropanoic acids can be supplemented to the cul-
ture medium, the development of strains capable of converting
glucose or other simple carbon sources to curcuminoids repre-
sents an important strategy for the engineering process. This ap-
proach eliminates the need to add expensive precursors to the
medium, thus decreasing the production cost. Large-scale pro-
duction also would be more suitable. This medium simplification
would also be very advantageous in cases where curcuminoids are
to be used as drugs that need to be produced and delivered in situ.

The aromatic amino acid biosynthesis in E. coli is a very com-
plex, highly regulated branched pathway (Fig. 4). This pathway is
regulated at the transcription and allosteric levels. One of the most
regulated steps of the pathway is the one catalyzed by 3-deoxy-D-
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TABLE 3 Production titers and yields of polyketides obtained by heterologous production in microorganisms or extracted from plants

Titer Yield
Organism Polyketide Substrate (mg/liter) (g polyketide/g substrate) Reference(s)
C. longa Curcuminoids Curcuminoids in dry turmeric 0.5-0.7 15, 134-136
E. coli Curcuminoids
Curcumin Ferulic acid 113 0.58 106
Bisdemethoxy curcumin p-Coumaric acid 91 0.55 106
Dicinnamoyl methane Phenylalanine 360 0.73 122
Cinnamoyl-p-coumaroyl methane Tyrosine + phenylalanine 19 0.02 106
Flavonoids
Naringenin p-Coumaric acid 474 1.11 137
Tyrosine 57 0.10 116
Pinocembrin Cinnamic acid 480 1.08 138
Phenylalanine 58 0.12 116
Stillbenoids
Resveratrol p-Coumaric acid 171 1.04 119
S. cerevisiae Flavonoids
Naringenin Phenylalanine” 109 132
Pinocembrin Cinnamic acid 16.3 0.11 127
Stillbenoids
Resveratrol p-Coumaric acid 391 0.16 139

@ Phenylalanine-overproducing strain.

arabino-heptulosonate 7-phosphate (DAHP) synthase (142). The
three isoenzymes of this DAHP synthase (encoded by aroH, aroF,
and aroG) are feedback inhibited by the end products. Another
regulatory pointis present at the chorismate branch point with the
enzymes chorismate mutase and prephenate dehydratase (pheA
and tyrA). These bifunctional enzymes are feedback regulated by
their end products, phenylalanine and tyrosine. In addition to the
allosteric inhibition, it is necessary to take into account the tran-
scriptional control mediated by the protein TyrR (tyrosine repres-
sor). In case of amino acid overproduction, TyrR can repress aroF,
aroG, tyrA, and tyrB (143). As a result, the elimination of TyrR-
mediated control was shown to be an important target for the
successful overexpression of amino acids (144). Also, the se-
quences of the repressed genes were modified so that their prod-
ucts were no longer sensitive to feedback inhibition. The overex-
pression of feedback inhibition-resistant derivatives of the aroG
(aroG™) and tyrA (tyrA™") genes proved to help in amino acid
overexpression (145-149).

Engineering the central carbon metabolism to increase the
availability of the two main precursors, phosphoenolpyruvate
(PEP) and erythrose 4-phosphate (E4P), has been another ap-
proach to overexpress these amino acids. Several strategies have
been tested, for example, the overexpression of ppsA (encoding
PEP synthase) and tkfA (encoding transkelotase) (147-149).

Some studies related to production of phenylpropanoic acids
(140, 141, 150-152) and flavonoids (153) have used tyrosine- or
phenylalanine-overproducing strains, and all obtained better re-
sults with these strains than with the wild type. All of them used
similar approaches, in which they overexpressed aroG™ and
tyrA™", and in some cases ppsA and tktA, and deleted tyrR (AtyrR).
To direct the pathway only to tyrosine production, they also de-
leted the pheA gene (ApheA). Huang et al. (151) engineered a
well-developed phenylalanine overproducer strain to obtain a ty-
rosine-overproducing strain. The phenylalanine-overproducing
strain E. coli ATCC 31884 overexpresses aroG™, aroF™, and
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pheA™ and suppresses tyrR. This strain was transformed into a
tyrosine-overproducing strain by disruption of the pheA™ and
tyrA loci and insertion of fyrA™”.

Also in S. cerevisiae, aromatic amino acid biosynthesis is subject
to strong feedback inhibition by tyrosine and phenylalanine. To
overcome this problem, Koopman et al. (132) introduced a ty-
rosine feedback inhibition-resistant derivative of aro4 (aro4™") in
combination with the deletion of aro3, the other allele of DAHP
synthase. Those authors also eliminated the competing activity of
phenylpyruvate decarboxylase (which yields phenyl acetaldehyde
instead of phenylalanine) by deleting the arol0, pdc5, and pdc6
genes that encode it. This engineered S. cerevisiae strain allowed
significantly higher production of naringenin than the wild-type
strain.

From Tyrosine/Phenylalanine to Coumaric Acid, Caffeic
Acid, Ferulic Acid, and Their Corresponding CoA Esters

In the last years, several studies have used the enzymes involved in
the phenylpropanoid pathway to produce compounds other than
curcuminoids, such as phenylpropanoic acids (coumaric acid,
caffeic acid, and ferulic acid) (140, 141, 151, 152, 154-157), stil-
benoids (155, 158), and flavonoids (116, 117, 150, 155, 159-162).
In the design and construction of those pathways, some enzymes
from other organisms were used that could also be considered for the
optimization of the heterologous production of curcuminoids.

Due to its valuable pharmacological properties of caffeic acid,
among them antioxidant (163), anti-inflammatory (164), and an-
ticancer (165) properties, the caffeic acid biosynthetic pathway
has been intensively studied in the last decade. Berner et al. (154)
studied the caffeic acid biosynthetic pathway in the actinomycete
Saccharothrix espanaensis and heterologously expressed it in Strep-
tomyces fradiae XKS, a polyketide synthase-defective mutant
strain that is considered to be a very convenient host for expres-
sion experiments (166). Streptomyces, applied in the production of
a wide range of secondary metabolites, including polyketides, can
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FIG 4 Biosynthesis of aromatic amino acids in Escherichia coli. Red lines show the regulation points.

be another candidate for the heterologous production of plant-
specific polyketides (167). Berner et al. (154) concluded that L-ty-
rosine (and not L-phenylalanine) is converted to p-coumaric acid
by sam8, encoding TAL (SeTAL). This is not in accordance with
the general phenylpropanoid pathway in plants, but it allows a
simpler pathway that can be integrated in the heterologous pro-
duction of curcuminoids by E. coli. Other authors also reported
their findings on other bacterial TALs. Studies of Rhodobacter cap-
sulatus TAL (RcTAL) and Rhodobacter sphaeroides TAL (RsTAL)
catalytic efficiencies showed a clear preference of these enzymes
for tyrosine instead of phenylalanine (Table 4). These TAL en-
zymes that allow p-coumaric acid to be produced without requir-
ing the C4H step, where this enzyme converts cinnamic acid to
coumaric acid, are highly advantageous since one can avoid the
use of the C4H enzyme, which is not successfully expressed in
prokaryotic organisms, thus creating a blockage in the biosyn-
thetic pathways (161). C4H is a membrane-bound cytochrome
P450-dependent hydroxylase, and its expression in bacteria is very
challenging due to protein instability and insolubility, as well as
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the lack of cytochrome P450 reductase activity that is necessary for
P450 function (redox partners) (108, 168). After producing cou-
maric acid, caffeic acid is directly converted by sam5, encoding a
4-coumarate 3-hydroxylase (C3H or Coum3H). C3H can also
convert coumaroyl-CoA to caffeoyl-CoA (169). Moreover, Berner
et al. (154) identified sam?7, encoding a caffeoyl-CoA ligase (4CL)
that catalyzes the ligation of caffeic acid to CoA, leading to caffeoyl-
CoA. This route, producing caffeic acid and then caffeoyl-CoA, can
be very useful to ultimately produce curcumin since caffeoyl-CoA
can be converted in feruloyl-CoA by CCoAOMT (Fig. 1) and curcu-
min is produced from two molecules of feruloyl-CoA and one of
malonyl-CoA.

The pathway described by Berner et al. (154) was afterwards
reconstituted in E. coli by Choi et al. (155) and Kang et al. (141) to
produce phenylpropanoic acids such as p-coumaric acid, caffeic
acid, and ferulic acid. In their pathways, the authors used SeTAL
and sam5 (C3H) from S. espanaensis and COMT from Arabidopsis
thaliana. Although Choi et al. (155) reported positive results, fe-
rulic acid production in the end was only 7.1 mg/liter. The path-
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TABLE 4 Kinetic parameters of phenylalanine ammonia lyases/tyrosine ammonia lyases from different organisms toward L-phenylalanine and

L-tyrosine
EC no. Enzyme Organism Substrate K, (0M) ko (s7") koK, (sT"M™')  Reference
4.3.1.24  Phenylalanine ammonia lyase Rhodotorula rubra L-Phe 446 157¢
L-Tyr 220
4.3.1.23  Tyrosine ammonia lyase Saccharothrix espanaensis ~ L-Phe 2860 0.0038 1.3 154
L-Tyr 15.5 0.015 968
Rhodobacter sphaeroides L-Phe 560 0.01 18 170
L-Tyr 60 0.02 333
Rhodobacter capsulatus L-Phe 560 0.04 57 170
L-Tyr 160 0.06 375
4.3.1.25  Phenylalanine/tyrosine ammonia lyase ~ Rhodotorula glutinis L-Phe 183 1.6 8.7 X 10° 171°
L-Tyr 615 0.53 8.6 X 10%
@ keoe and k., /K, were not determined. However, the enzyme showed a V..., of 0.169 pumol min~' mg ! for L-Phe and 0.033 pmol min~ ' mg ™' for L-Tyr.

b Kinetic properties at pH 8.5. At pH 9.5 the RgTAL enzyme showed k., K,,, and k., /K,,, v:
68 LM, and 1.4 X 10* s~ M ™!, respectively, for L-Tyr.

way created by Kang et al. (141) contained a codon-optimized tal
gene that improved the production of p-coumaric acid and ferulic
acid but not that of caffeic acid. The authors also tested a tyrosine-
overproducing strain that produced 974 mg/liter p-coumaric acid,
150 mg/liter caffeic acid, and 196 mg/liter ferulic acid in shake
flasks after 36 h of cultivation.

Lin and Yan (140) and Huang et al. (151) tested a different
approach for caffeic acid production. Since one of the most chal-
lenging steps in the recreation of the plant phenylpropanoid path-
way in E. coli is the one carried out by the cytochrome P450-
dependent hydroxylases (172), the search for alternative enzymes
compatible with E. coli is crucial. With that in mind, Lin and Yan
(140) characterized an E. coli native hydroxylase complex, hy-

HO
—_— OH
Glucose ——» HE NH, \ ”
L-Tyrosine 4HPA3H
HO
(0}
B OH AL
Glucose ——» —_—
HO NH, HO
> L-Tyrosine

HO

alues of 1.5s7 ', 126 M, and 1.2 X 10* s 7' M, respectively, for L-Phe and 0.93 s~ ",

droxyphenylacetate 3-hydroxylase (4HPA3H), and concluded
that this enzyme, besides converting L-tyrosine to L-dopa, was also
able to efficiently convert p-coumaric acid to caffeic acid (Fig. 5,
top). Furthermore, the authors found that RsTAL and RcTAL
were able to accept tyrosine and L-dopa as substrates, with RCTAL
being slightly more active toward both substrates. Hence, they
were able to design an artificial dual and promiscuous pathway
that used both p-coumaric acid and L-dopa as intermediates, re-
sulting in the production of 50.2 mg/liter caffeic acid in shake
flasks after 48 h of cultivation from simple carbon sources. This
production was also obtained by alleviating feedback inhibition
and redirecting carbon flux into tyrosine biosynthesis. Huang et
al. (151) explored the catalytic potential of 4HPA3H and were able

(0]
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FIG 5 Pathway for biosynthesis of caffeic acid using the approaches described by Lin and Yan (140) and Huang et al. (151) (top) and Zhang and Stephanopoulos
(152) (bottom). TAL, tyrosine ammonia lyase; C3H, 4-coumarate 3-hydroxylase; 4HPA3H, hydroxyphenylacetate 3-hydroxylase; 4CL, 4-coumarate-CoA ligase.

48 mmbr.asm.org

Microbiology and Molecular Biology Reviews

March 2015 Volume 79 Number 1


http://mmbr.asm.org
http://mmbr.asm.org/
Rectangle


to produce 3.82 g/liter caffeic acid from 3.5 g/liter p-coumaric acid
in a wild-type E. coli strain. When using a tyrosine-overproducing
strain, 767 mg/liter caffeic acid was produced in 72 h using shake
flasks. In this work, the authors used Rhodotorula glutinis TAL
(RgTAL), which was reported to be the most active TAL among all
the identified ones (150, 173—175) (Table 4).

Zhang and Stephanopoulos (152) also used RgTAL for caffeic
acid biosynthesis, in an experiment using two parallel routes and a
tyrosine overproducer strain (Fig. 5, bottom). The authors cloned
4CL from Petroselinum crispum (Pc4CL1), that converts coumaric
acid to coumaroyl-CoA, and C3H from S. espanaensis, which con-
verts coumaroyl-CoA to caffeoyl-CoA or coumaric acid to caffeic
acid. Caffeoyl-CoA is converted to caffeic acid by E. coli endoge-
nous thioesterases (176). They obtained good results with the TAL
and C3H route, i.e., 106 mg/liter caffeic acid in a 2-liter bioreactor.
However, the introduction of the alternative biosynthesis route
through coumaroyl-CoA and caffeoyl-CoA did not lead to in-
creased caffeic acid production from glucose. On the contrary, it
introduced an extra metabolic burden and led to lower produc-
tion. The problem could be due to inactivity or low activity of E.
coli endogenous thioesterases against caffeoyl-CoA. The authors
suggested that low copies of TAL gene were sufficient to obtain
high-titer production and that fine-tuning the C3H gene copy
number should be pursued since the precursors were accumulat-
ing instead of being converted to caffeic acid.

Furuya et al. (156) found that Rhodopseudomonas palustris cy-
tochrome P450 CYP199A2 possesses hydroxylation activity to-
ward p-coumaric acid (and cinnamic acid) and subjected it to
site-directed mutagenesis to create mutants with novel and im-
proved catalytic properties. E. coli coexpressed CYP199A2 with
the redox partners’ putidaredoxin reductase (pdr) from Pseu-
domonas putida and palustrisredoxin (pux) from R. palustris. In
this study, the authors constructed a CYP199A2 F185L mutant
that showed 5.5 times higher hydroxylation activity toward p-
coumaric acid (3.3 g/liter) than the wild type, reaching 2.8 g/liter
caffeic acid after 24 h in a glycerol medium. Furuya and Kino (177)
produced caffeic acid in E. coli from p-coumaric acid using
4HPA3H from Pseudomonas aeruginosa strain PAO1. In a whole-
cell reaction, 10 mM p-coumaric acid was converted to caffeic acid
in 2 h. Since an initial p-coumaric acid concentration higher than
10 to 20 mM inhibited the reaction, during the 24-h fermentation,
dimethyl sulfoxide (DMSO) containing 20 mM p-coumaric acid
was repeatedly added to the reaction mixture (at 2, 8, and 14 h).
The reaction with no energy sources produced 4 times more caf-
feic acid than the one with glucose. However, the highest yield
obtained (10.2 g/liter) was in a glycerol medium, thus showing
once again that glycerol strongly enhanced the productivity. To
our knowledge, this is the highest production level attained so far.

Santos et al. (150) and Choi et al. (155) optimized the heterol-
ogous pathway for the production of flavonoids and stilbenoids
(naringenin and resveratrol) from glucose. Santos et al. (150) used
codon-optimized RgTAL, after discarding RsTAL. To convert p-
coumaric acid to coumaroyl-CoA, the authors compared P.
crispus 4CL (Pc4CL1) and Streptomyces coelicolor 4CL2 (Sc4CL2)
efficiencies and concluded that combining these enzymes with
TAL enzyme completely abolished accumulation of coumaric
acid, which was highly produced when TAL enzyme was expressed
alone. Since codon-optimized Pc4CL1 performed slightly better
than Sc4CL2 (i.e., there was a higher p-coumaric acid yield in
combination with TAL), this enzyme was chosen to continue the
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optimization of the flavonoid production pathway. In the past,
Sc4CL2 has proven to be more efficient when the conversion of
cinnamic acid is also needed (116, 117, 162), allowing the avoid-
ance of the C4H step. This bacterial enzyme efficiently converts
cinnamic acid (Table 5), which is usually a very poor substrate for
plant 4CLs (178). Choi et al. (155) used SeTAL and Sc4CL2 in the
first part of the flavonoid and stilbenoid pathway and concluded
that Sc4CL2 is specific for coumaric acid and that it could not use
caffeic acid and ferulic acid as a substrate (Table 5). This conclu-
sion is important, since when using promiscuous enzymes in the
curcuminoid pathway (Fig. 3), the final product is a mixture of
curcuminoids. This enzyme could help to direct the pathway to a
specific curcuminoid if desired. Kim et al. (153) produced fla-
vonoids through comparison of three 4CL enzymes from three
different organisms: P. crispum (Pc4CL2), O. sativa (Os4CL3), and
S. coelicolor (Sc4CL2). The authors concluded that Os4CL3 was by
far the one that allowed higher titers of flavonoids, followed by
Pc4CL2. Furthermore, in their study the authors deleted the isoci-
trate dehydrogenase gene, icdA, to increase the amount of CoA in
E. coli and consequently accelerated the production of p-couma-
royl-CoA. This deletion allowed for a higher yield of flavonoids.

Lin et al. (175), aiming to produce coumarins using a biosyn-
thetic pathway for the first time, used RgTAL since it possesses
high activity toward tyrosine compared with the RcTAL (Table 4)
used in their previous work (140). They tested three different 4CLs
(PcaCL2, At4CL1, and At4CL2) (Table 6). When broad substrate
specificity was needed, Pc4CL2 was used to synthesize the CoA
esters of coumaric acid and ferulic acid, since it was shown in the
past that it can accept several phenylpropanoid acids as the sub-
strate (160, 185). When higher catalytic efficiency toward cou-
maric acid was required, the enzyme At4CL1 was used (Table 6).
E. coli 4HPA3H was also used to hydroxylate coumaric acid to
caffeic acid, as was shown in other studies (140, 151) (Fig. 5, top).
The 4-coumarate-CoA ligase used in this case was Ar4CL2 due to
its higher affinity and catalytic activity toward caffeic acid than
Pc4CL2 and At4CL1. CCoAOMT1 from A. thaliana was used to
convert caffeoyl-CoA to feruloyl-CoA. Also with the goal of ob-
taining feruloyl-CoA, but from ferulic acid, Watts et al. (158) used
the recently reported 4-coumarate-CoA ligase Ar4CL4. This en-
zyme was shown to prefer ferulic acid as a substrate (181) (Table
5). However, the expected production of stilbene was not detect-
able by high-pressure liquid chromatography (HPLC). This does
not imply that At4CL4 was not working, since the problem could
be in the stilbene synthase step. Feruloyl-CoA conversion could be
slow, causing an accumulation of feruloyl-CoA, which can be con-
verted again to ferulic acid due to a balance between CoA ligase
and endogenous E. coli thioesterases (158, 176). Since the produc-
tion of feruloyl-CoA would be highly advantageous in curcumin
production, further characterization of At4CL4 should be consid-
ered. Ar4CL2 and its mutant (Table 5) also seem to be very inter-
esting options to be explored in the future.

As mentioned above, although S. cerevisiae has never been en-
gineered to produce curcuminoids, it has been used to produce
other polyketides. Therefore, these already engineered and vali-
dated enzymatic steps may be used in the future for successful
production of curcuminoids by the yeast. Furthermore, CUS has
already been successfully expressed in S. cerevisiae to produce gin-
gerol derivatives (115).

Again, an attractive advantage of the yeast compared to E. coli is
its ability to functionally express plant cytochrome P450 mo-
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TABLE 5 Kinetic parameters of 4-coumarate-CoA ligases (EC 6.2.1.12) from different organisms®

K,, ke kel K,
Organism Enzyme Substrate (pM) V.0 Voad K, (s (s7'M7')  Reference(s)
Petroselinum  Pc4CL1 Cinnamic acid 2,850  0.008 nmol s~ ! 0.003 wls™* — — 179
crispum p-Coumaric acid 14 0.020 nmol s™* 1429 pls™!
Caffeic acid 20 0.017 nmol s~ ' 0.850 wls™*
Ferulic acid 33 0.018 nmol s~ * 0.545 wls™*
Arabidopsis ~ At4CL1 Cinnamic acid 6,320  11.6 X 10 *nmols 'ml™"  0.184 us™ ! — — 180
thaliana p-Coumaric acid 38 113X 10 *nmols 'ml™"  29.737 us™'
Caffeic acid 11 31X 10 *nmols 'ml™' 28182 us™!
Ferulic acid 199 6.0 X 10 *nmols 'ml™'  3.015ps !
At4CL2 Cinnamic acid 6,630 0.6 X 10 *nmols 'ml~'  0.009 s — —
p-Coumaric acid 252 28X 10 *nmols 'ml™"  1.111 ws™'
Caffeic acid 20 2.1 X 10 *nmols ' ml ™! 10.500 ps ™!
Ferulic acid NC — —
At4CL3 Cinnamic acid 2,070 3.1 X 10 *nmols 'ml! 0.150 ws ™! — —
p-Coumaric acid 23 1.9 X10 *nmol s ' ml™! 8.261 s !
Caffeic acid 374 25X 10 *nmols 'ml™'  0.668 s~
Ferulic acid 166 1.6 X 10" *nmols 'ml™"'  0.964 ps™*
Ar4CL4 p-Coumaric acid 432 129.6 nmol s ™' 300 uls™! — — 181
Caffeic acid 186 204.6 nmol s~ 1,100 pls ™!
Ferulic acid 26 171.6 nmol s ! 6,600 wls™*
At4CL1 p-Coumaricacid  66.7  — — 0.248 5,365 130
AtACL2 Cinnamic acid 6,642 203nmols ' mg ' 31 pls 'mg™! 125 1,897 182,183
p-Coumaric acid 233 475 nmol s~ ' mg ™! 2,039 pls™ ' mg™! 29.5 126,609
Caffeic acid 22 236 nmols ' mg ! 10,727 uls ' mg ™! 14.6 663,636
Ferulic acid ND ND ND ND ND
AtACL2 mutant  Cinnamic acid 286 190 nmol s ™' mg ™" 664 uls 'mg™! 1.8 41,259
(M293P + p-Coumaric acid 22 321 nmols 'mg ' 14,591 uls ' mg ™! 20.0 909,091
K320L) Caffeic acid 41 267 nmol s™' mg™' 6,512 uls™' mg™" 165 402,439
Ferulic acid 30 247 nmol s~ ' mg ™! 82,333 uls 'mg™! 153 510,000
Oryza sativa  Os4CLI1 Cinnamic acid 9.4 0.100 nmol s~ ' mg ™! 10.638 uls ' mg™! 0.006 663 184
p-Coumaricacid 119  0.130 nmols™ ' mg~! 10.924 pls™ ' mg™! 0.008 681
Caffeic acid 29.3  0.140 nmols ' mg™! 4778 pls™ ' mg ™! 0.009 296
Ferulic acid 8.3 0.110 nmol s~ ' mg ™! 13.253 uls 'mg™! 0.007 824
Os4CL2 Cinnamic acid 21.7  0.299 nmols ' mg™’ 13.779 pls™ ' mg ™! 0.019 867
p-Coumaricacid 16.8  0.629 nmols™ ' mg ' 37.440 pls™ ' mg™! 0.040 2,351
Caffeic acid 27.6  0.708 nmols ' mg " 25.652 uls ' mg! 0.045 1,612
Ferulic acid 2.2 0.613 nmol s~ ' mg™! 278.636 uls™ ' mg~! 0.039 17,295
0s4CL3 Cinnamic acid 282 3.010 nmols ' mg™! 106.737 pls™ ' mg ™! 0.182 6,458
p-Coumaric acid 4.9 4.700 nmol s~ ' mg ™! 959.184 puls™ ' mg ™! 0.285 58,521
Caffeic acid 10.9  4.210 nmols ' mg™* 386.239 uls™ ' mg™! 0.255 23,330
Ferulic acid 3.5 4.930 nmol s~ ' mg ™! 1,408.571 pls 'mg™"  0.299 84,943
0Os4CL4 Cinnamic acid 157 0.350 nmols™ ' mg ™' 22.293 wls ' mg™! 0.021 1,361
p-Coumaric acid 3.9 0.770 nmol s~ ' mg ™! 197.436 uls™ ' mg™! 0.047 12,176
Caffeic acid 5.8 0.590 nmol s ' mg ™" 101.724 pls™ ' mg ™! 0.036 6,206
Ferulic acid 4.6 0.520 nmol s~ ' mg ™! 113.043 pls™ ' mg ™! 0.032 6,956
Os4CL5 Cinnamic acid 544  0.300 nmols ' mg~’ 5515 pls 'mg ! 0.017 312
p-Coumaricacid 103 0.830 nmols ' mg ' 80.583 uls ' mg™! 0.048 4,660
Caffeic acid 26.1  0.240 nmols™ ' mg ™" 9.195 uls ' mg™! 0.014 535
Ferulic acid 6.9 0.590 nmol s~ ' mg™! 85.507 wls ' mg™! 0.034 4,871
Streptomyces  Sc4CL2 Cinnamic acid 190 — — 0.475 2,499 178
coelicolor p-Coumaric acid 131 0.202 1,545
A3(2) Caffeic acid ND ND ND
Ferulic acid NC NC NC

% —, information was not available; ND, not determined, due to very low activity; NC, no conversion, no enzymatic activity.
b It was not possible to convert all the data to the same units for comparison purposes. The units are indicated for each case.

nooxygenases. C4H from A. thaliana and Glycine max was suc-  was not enough to support the C4H expression, CPR1 (NADPH-
cessfully cloned and expressed in S. cerevisiae in several studies cytochrome P450 reductase) from S. cerevisiae or CPR from a
(123,127,128, 131). Although C4H was functionally expressed, it~ Populus hybrid (P. trichocarpa X P. deltoids) was overexpressed.

was still a rate-limiting step. Since the endogenous CPR activity Other enzymes from the phenylpropanoid pathway, such as
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TABLE 6 Comparison of kinetic parameters of 4-coumarate-CoA
ligases (EC 6.2.1.12) from different organisms”

Sp act Sp act/K,,
K, (nmols™ " (wls™!
Organism Enzyme Substrate (LM) mg™ ) mg ")
Petroselinum  Pc4CL2  p-Coumaricacid 11.8  1.983 168.051
crispum Caffeic acid 8.4 1.533 182.540
Ferulic acid 112 1367 122.054
Arabidopsis ~ At4CL1  p-Coumaricacid 28.7  11.550 403.439
thaliana Caffeic acid 15.7  5.267 335.478
Ferulic acid 40.8  6.800 166.667
At4CL2  p-Coumaricacid 45.1  10.433 231.330
Caffeic acid 7.9 8.483 1,073.797
Ferulic acid ND

@ Data are from reference 175. ND, not determined due to very low activity.

PAL from Rhodosporidium toruloides and a Populus hybrid,
RsTAL, RcTAL, RgTAL, 4CL2 from Nicotiana tabacum, 4CL216
from a Populus hybrid, 4CL from G. max, Le4CL1, Ar4CL1, and
Pc4CL2, were also successfully expressed in yeast (115, 123-132,
174). The At4CL1 gene seems to be the best option to produce
resveratrol in S. cerevisiae (139), since its yield was more than 65
times higher than when using 4CL216 from Populus hybrid (125)
and 4CL2 from Nicotiana tabacum (124) in similar experiments
using Vitis vinifera STS (stilbene synthase). Also, the resveratrol
yield in S. cerevisiae was 3.4 times higher than the maximum ob-
tained with E. coli using At4CL1, but using Arachis hypogaea STS
(158). Shin et al. (186) used At4CL1 and A. hypogaea STS in S.
cerevisiae and obtained very small amounts of resveratrol com-
pared to those obtained by Sydor et al. (139). This proves that the
combination between 4CL and STS, as well as the host, is very
important to obtain excellent results and that the enzymes from
some organisms work better together than those from others. Al-
though flavonoid and stilbenoid production has been proven in
some cases to be more efficient in bacteria (124, 127, 138), there
are studies suggesting that S. cerevisiae is an adequate host for the
expression of aromatic plant compounds (139).

Type 1l Polyketide Synthases and the Biosynthesis of
Curcuminoids

In the last decade, several advances have been made in curcumi-
noid biosynthesis as a result of the identification of DCS and mul-
tiple CURSs from C. longa and of CUS from O. sativa. However,
DCS and CURS enzymes have been used to synthesize curcumi-
noids only in vitro, never in vivo. CUS was chosen to produce
curcuminoids in vivo (106, 121, 122) since it was the first
polyketide synthase involved in curcuminoid biosynthesis to
be reported. Also, CUS has the advantage of being able to pro-
duce curcuminoids directly from the CoA esters, unlike
CURSs, which need DCS to convert the CoA ester to the cor-
responding diketide-CoA ester. However, this advantage does
not mean that an approach using DCS and CURS will not lead
to higher yields, and this option should continue to be the
object of further research.

Due to the immense pharmaceutical value of curcuminoids,
other genes encoding type III polyketide synthase (PKS) cur-
cumin/curcuminoid synthases are being sought. Brand et al.
(187) characterized a type III PKS from Wachendorfia thyrsiflora,
WiPKS1 (GenBank accession number AY727928.1). W. thyrsiflora
is known to synthesize phenylphenalenones which are thought to
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be synthesized from curcuminoids. The authors also character-
ized another PKS in W. thyrsiflora, WtPKS2 (unpublished work)
(GenBank accession number AAW50922), that synthesizes a
methylketone product, which is presumably derived from the
corresponding diketide-CoA via hydrolysis and decarboxyl-
ation. Based on their high homology with C. longa DCS and
CURS1 (WtPKS1 shares 63% identity to DCS and WPKS2 shares
62% identity to CURS1) (97), it is assumed that WtPKS1 is a
diketide synthase, WtPKS2 is a curcuminoid synthase, and cur-
cuminoids are synthesized by an enzyme system similar to the one
with DCS and CURS], not only in W. thyrsiflora but also in other
plants.

Also, with the goal of finding uncharacterized type III PKS in C.
longa, Resmi and Soniya (103) used reverse transcription-PCR
(RT-PCR) genomic screening. This helped them to identify
cDNAs that encode type III PKS proteins. One of the type III PKS,
CIPKS10 (GenBank accession number JN017185), proved to pos-
sess all the possible requirements for catalyzing curcuminoid bio-
synthesis; namely, it shares 93% identity with CURS1 and 81%
identity with CURS2, and the putative active-site environment
(amino acids needed for coumaroyl-CoA binding site and cycli-
zation) showed the same characteristics found in the reported
CURSs. However, CIPKS10 showed high expression levels in leaf
tissues, low levels in shoots, and very low levels in rhizomes and
roots. This is in contrast with the reported curcuminoid expres-
sion pattern, which can indicate possible curcuminoid biosynthe-
sis in aerial parts also. Dihydro derivatives of curcuminoids (di-
hydrocurcuminoids) also showed higher expression levels in
leaves than in the rhizome (105). Ramirez-Ahumada et al. (98)
also concluded that the highest curcuminoid synthase activity
from turmeric extracts was found in leaves, followed by shoots
and rhizome, which proves that curcuminoids and their ana-
logues can be synthesized not only in the rhizomes but also in the
roots and the leaves. Future work to characterize CIPKS10, Wt-
PKS1, and WPKS2 through in vitro and in vivo assays is required
to confirm the curcuminoid synthase activity.

Malonyl-CoA Availability

Although it has been demonstrated that some curcuminoid syn-
thases are able to catalyze two or more reactions from CoA esters
and to efficiently produce curcuminoids heterologously, the pres-
ence of the precursor malonyl-CoA is still essential for these reac-
tions to succeed. It is believed that the biosynthetic production of
flavonoids, stilbenoids, and polyketides is controlled by the lim-
ited intracellular pool of malonyl-CoA (116, 137, 188). In these
pathways, three molecules of malonyl-CoA are needed to obtain
the final product, whereas for curcuminoid production, only one
molecule is needed. Malonyl-CoA is naturally synthesized in mi-
croorganisms, but it is used for the production of fatty acids and
phospholipids, leaving only a very limited amount available for
the production of secondary metabolites (189). Therefore, it is
essential to engineer the microbial host to achieve metabolic bal-
ance between the need for malonyl-CoA for growth and secondary
metabolite production (137). In the last decade, several metabolic
engineering approaches were developed to increase the intracel-
lular pool of malonyl-CoA. One of them is the overexpression of
acetyl-CoA carboxylase (ACC), which converts acetyl-CoA into
malonyl-CoA (106, 116, 188, 190-192) (Fig. 6). Leonard et al.
(188) and Xu et al. (190) overexpressed ACC encoded by
accABCD from Photorhabdus luminescens and E. coli, respectively,
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FIG 6 Metabolic pathways connecting malonyl-CoA with curcuminoid biosynthesis in Escherichia coli.

and obtained an increase in the flavanone and fatty acid produc-
tion. The ACC reaction is divided into two partial reactions (Fig.
6). In the first reaction, biotin is attached to the biotin carboxyl
carrier protein (BCCP) (encoded by accB) and is carboxylated via
ATP consumption by the biotin carboxylase AccC. The carboxyl
group is then transferred to acetyl-CoA by carboxyltransferase
(AccAD). Since ACC requires biotinylation by the action of biotin
ligase (BLP) to be completely functional, BLP (encoded by birA)
overexpression was also studied using P. luminescens (188, 193)
and E. coli (188) BLP. Coexpression of ACC and BPL, both from P.
luminescens, was found to be the best approach to improve the
flavonoid yield (188). The use of the acetyl-CoA pathway to in-
crease the supply of malonyl-CoA has also been explored (188,
192). When glucose is used as a carbon source, acetyl-CoA is con-
verted to acetate under aerobic conditions, which is toxic for E.
coli and inhibits its growth (194). By overexpressing E. coli acetate
assimilation pathways, it is possible to increase the production of
the desired compound and, at the same time, reduce acetate accu-
mulation. The first pathway includes two enzymes, acetate kinase
(ACK) and phosphotransacetylase (PTA) (195), and the second
pathway includes acetyl-CoA synthase (ACS). According to Leon-
ard et al. (188), ACS overexpression resulted in a more efficient
acetate assimilation than ACK-PTA overexpression. The better
results obtained with ACS are likely due to the reversibility of the
ACK-PTA pathway (196). ACS coexpression with ACC increased
flavonoid production up to 1,221%.
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Another strategy to increase the malonyl-CoA supply is the
overexpression of the Rhizobium trifolii matB and matC genes,
encoding malonate synthase and malonate carrier protein, respec-
tively (138, 150, 197). These enzymes allow the transport of sup-
plemented malonate into the cell and its subsequent conversion to
malonyl-CoA. Santos et al. (150) obtained an increase of fla-
vonoid synthesis up to 59% with this approach, while Leonard et
al. (138) obtained up to 250%.

Other strategies include the deletion of the genes encoding
succinate dehydrogenase (sdhA), acetaldehyde dehydrogenase
(adhE), amino acid transporter (brnQ), citrate lyase (citE) (193),
fumarase (FUM) (encoded by fumB and fumC), and succinyl-CoA
synthetase (SUCOAS) (encoded by sucC and sucD) and overex-
pression of phosphoglycerate kinase (PGK), glyceraldehyde-3-
phosphate dehydrogenase (GAPD), and pyruvate dehydrogenase
(PDH) (encoded by aceEF and IpdA) (137). Leonard et al. (138)
added the fatty acid inhibitor cerulenin to the fermentation to
downregulate fatty acid biosynthesis (FAB) initiation. Cerulenin
represses both fabB and fabF and led to an increase of flavonoid
production by over 900%. Santos et al. (150) also obtained a sig-
nificant gain with cerulenin supplementation. However, the cost
of cerulenin may be excessive if industrial-scale fermentations are
foreseen (150). Therefore, a strategy that focuses on rerouting
native metabolic flows and uses stoichiometric modeling (193) to
improve malonyl-CoA availability is more appropriate for in-
creasing curcuminoid production.
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Other Limitations

Although several studies in the last years made significant progress
in proving the practicality of curcuminoid production in E. coli,
the established protocols still present some disadvantages that
could be prohibitive during process scale-up. One of them is the
dependence on precursor feeding, which may be solved by engi-
neering strains capable of converting cheaper substrates such as
glucose. A second limitation is that fermentation often needs two
separate cultivation steps to obtain high titers of curcuminoids.
Usually strains are first grown in a rich medium like LB (Luria
broth) in order to produce large amounts of biomass and reach a
suitable protein production level. Then, after reaching the expo-
nential phase, the cells are harvested and transferred to minimal
medium, such as M9 medium, where the substrates are added and
the curcuminoids are produced. This strategy was pursued in cur-
cuminoid production in vivo (106, 121, 122) and also for other
phenolic compounds (116, 117, 137, 138, 141, 151, 153, 155, 192,
193). The use of plasmids imposes a metabolic burden on the host
strain that usually reduces the growth rate of the cell due to the
expression of plasmid-borne resistance and replication of the
plasmids. Therefore, the two-step fermentation strategy is used to
compensate for the metabolic burden associated with protein
overexpression and poor growth observed in minimal medium.
Although this strategy is feasible at the laboratory scale, the sepa-
ration of biomass is much more difficult and expensive in large-
scale fermentations (150). Therefore, the development of vigor-
ous strains that allow an efficient production in a single medium
formulation is essential (150). The use of MOPS (morpholinepro-
panesulfonic acid) minimal medium (198) has demonstrated the
successful production of flavonoids in a one-step fermentation
(150, 197) with no apparent growth deficiencies. The delay of
IPTG (isopropyl-B-p-thiogalactopyranoside) induction can also
alleviate the metabolic burden. Induction should be performed at
the exponential phase, since after that point, although bacteria are
still growing, the production titers decrease (150, 197). During
induction, the temperature should be maintained or decreased to
26 to 30°C for optimal enzyme synthesis and substrate conversion.
The compounds possibly used as substrates (caffeic acid, cou-
maric acid, and ferulic acid) present some toxicity to the cells at
high concentrations (152, 158), and cases where a lower concen-
tration was added at the beginning of the experiment and after it
was almost consumed more was added showed better results (151)
and should be considered, as well as fed-batch fermentations.
The success of the design and construction of heterologous
pathways and their expression depends on many factors. These
factors include cell growth characteristics but also the expression
levels and biological activity of the proteins of interest. The host,
the codon biases among different organisms, and the strengths of
promoters linked to the potential toxicity of the protein to the host
are topics that should always be considered in recombinant pro-
tein expression. A stable, robust, and well-characterized host cell
capable of growing on minimal and inexpensive carbon sources is
crucial for laboratory and large-scale production (199). However,
robust hosts are usually able to inactive or rid themselves of the
foreign DNA to minimize the metabolic burden. Several studies
proved that genome reductions (removal of transposons, inser-
tion sequence elements, cryptic phages, integrase genes, damaged
genes, and genes with unknown function) improve metabolic ef-
ficiency and even electroporation efficiency and accurate propa-
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gation of foreign DNA that was unstable in other strains (200—
203). These strains should be considered for curcuminoid
production. The vector(s) used to carry the curcuminoid pathway
should also be stable and consistent in copy number to ensure that
all the cells in the culture have the plasmid and produce curcumi-
noids. Plasmids should also have copy numbers as low as possible
to minimize the burden on the host cell and the ability to carry
large sequences of DNA. A better option is to integrate the genes of
interest in the chromosome due to the increased stability. This
insertion can dramatically impact the expression level of the het-
erologous genes; however, the promoter and ribosome binding
strength can be adapted, as well as the stability of the mRNA and
the resulting protein (199, 204). When expressing multiple heter-
ologous genes, several approaches can be used. For example, dif-
ferent inducible promoters can be used for each gene. This ap-
proach has the disadvantage of adding multiple inducers to the
medium, increasing the cost of production. It is also possible to
use the same inducible promoter for each gene but to vary the
promoter strength or to use nonnative T7 RNA polymerase to
control the expression (106, 122). Grouping multiple and related
genes into operons is also a good approach for regulating several
genes simultaneously using the same promoter (149, 205).

The choice of the right promoter with adequate strength is very
important, especially when the construction of the metabolic
pathway involves the introduction of more than one heterologous
gene, such as in the curcuminoid production case. Imbalances can
lead to over- or underproduction of enzymes and accumulation of
intermediate metabolites which may result in suboptimal titers.
Codon bias is also a subject to take into consideration, since rare
codons in E. coli are often abundant in heterologous genes, and
expression of those genes can lead to translational errors, frame-
shifting events, stalling, or premature translational termination,
especially when transcripts containing rare codons accumulate in
large quantities (206). This codon bias can be solved using syn-
thetic DNA with codon optimization or by cotransformation of
the host with a plasmid harboring rare tRNA, thus increasing the
copy number of the limiting tRNA (159). So far, in heterologous
production of curcuminoids by E. coli using plant genes (106, 121,
122), no approaches to solve codon bias have been used, which
proves that successful production can be achieved using plant
cDNA. Since this is the simplest and least expensive approach, it is
always worth testing it first. Production of flavonoids and stil-
benes was also achieved recently without codon optimization
(116,117, 153,158,160, 161). In addition to the importance of the
Shine-Dalgarno sequence in translation efficiency, the first
codons downstream of the initiation codon also act as a transla-
tion enhancer, and depending on this sequence, gene expression
can vary considerably (207-209). Therefore, to achieve produc-
tion-scalable titers, codon optimization of recombinant plant
proteins and improvement of catalytic activity, and also the iden-
tification of the best combination of plasmid copy number with
the right promoters to achieve optimal instead of maximal expres-
sion levels, need to be carefully studied.

The heterologous production of curcuminoids is very recent;
however, the titers and yields obtained so far are in the same range
of those obtained for flavonoids and stilbenoids that have been
thoroughly studied (Table 3). Additionally, yields similar to those
obtained from plants can be obtained by heterologous production
in E. coli, thus suggesting heterologous production as a promising
alternative to obtain these compounds. Moreover, the isolation of
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curcuminoids from plants is challenging, and curcumin is usually
sold as a mixture that contains a significant percentage of other
curcuminoids  (bisdemethoxycurcumin and demethoxycur-
cumin) (17, 18). Indeed, these curcuminoids present in smaller
amounts in plants are difficult and expensive to isolate, and there-
fore heterologous production in E. coli could be a viable alterna-
tive for their production through the use of a combination of
specific enzymes that could drive the production to a specific cur-
cuminoid.

FUTURE PERSPECTIVES

In the last decade, there have been remarkable advances in under-
standing the biosynthetic pathway of curcuminoid production in
C. longa and its heterologous production in E. coli. However, con-
tinuous efforts toward exploiting new heterologous hosts and
finding the most adequate synthetic enzymes and plasmids are
needed. Several enzymes should be studied to find the best candi-
dates for each step of the curcuminoid production pathway to
adequately transform the metabolic intermediates into the desired
products. Accumulation of intermediates should be avoided,
since this can be toxic to the heterologous host and lead to a de-
crease of the desired final product production.

Microbial production of curcuminoids is still at an early stage
and is limited by the identification of some curcuminoid syn-
thases, while PKS diversity is barely touched. Deeper study is ex-
tremely important and would allow the identification of novel
enzymes that catalyze unnatural reactions and consequently pro-
duce more unnatural, potentially valuable curcuminoids. The
huge accumulation of genome information from a variety of or-
ganisms due to the development of molecular biology techniques
and bioinformatic prediction of catalytic properties of gene prod-
ucts will allow combination of the best enzymes to generate novel
biosynthetic pathways for curcuminoid production in several or-
ganisms.

The curcuminoid titers and yields obtained so far using E. coli
are very promising, and we believe that, using synthetic biology
approaches and metabolic engineering tools, these can be further
improved to make heterologous production competitive with the
current process of extraction from plants. Although the current
levels of production of curcuminoids are probably below those
required for viable industrial production, process optimization
toward scale-up should be considered. To date, curcuminoids
have been produced only by using two separate cultivation media,
which represents a limitation when considering bioreactor fer-
mentations. Therefore, it is crucial to optimize the fermentation
conditions, including media and operating parameters. As men-
tioned above, heterologous production of curcuminoids is advan-
tageous compared to extraction from plants, as the former can be
easily controlled in a bioreactor and is not subject to unpredictable
factors such as weather that may affect plant cultivation. Also, in
contrast to the extraction process, heterologous production in mi-
croorganisms is not seasonal. In summary, we believe that after
adequate optimization efforts, curcuminoids can be produced by
microorganisms in bioreactors, providing the same or larger
amounts as reported for plant extraction, in a shorter period of
time and a smaller space, while using a process that is less expen-
sive and harmless to the environment.
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