943 research outputs found

    A new fault diagnosis and fault-tolerant control method for mechanical and aeronautical systems with neural estimators

    Get PDF
    A new method of fault detection and fault tolerant control is proposed in this paper for mechanical systems and aeronautical systems. The faults to be estimated and diagnosed are malfunctions occurred within the control loops of the systems, rather than some static faults, such as gearbox fault, component cracks, etc. In the proposed method two neural networks are used as on-line estimators, the fault will be accurately estimated when the estimators are adapted on-line with the post fault dynamic information. Furthermore, the estimated value of faults are used to compensate for the impact of the faults, so that the stability and performance of the system with the faults are maintained until the faulty components to be repaired. The sliding mode control is used to maintain system stability under the post fault dynamics. The control law and the neural network learning algorithms are derived using the Lyapunov method, so that the neural estimators are guaranteed to converge to the fault to be diagnosed, while the entire closed-loop system stability is guaranteed with all variables bounded. The main contribution of this paper to the knowledge in this field is that the proposed method cannot only diagnose and tolerant with constant fault, also diagnose and tolerant with the time-varying faults. This is very important because most faults occurred in industrial systems are time-varying in nature. A simulation example is used to demonstrate the design procedure and the effectiveness of the method. The simulation results are compared with two existing methods that can cope with constant faults only, and the superiority is demonstrated

    Fingerprint Recognition with Identical Twin Fingerprints

    Get PDF
    Fingerprint recognition with identical twins is a challenging task due to the closest genetics-based relationship existing in the identical twins. Several pioneers have analyzed the similarity between twins' fingerprints. In this work we continue to investigate the topic of the similarity of identical twin fingerprints. Our study was tested based on a large identical twin fingerprint database that contains 83 twin pairs, 4 fingers per individual and six impressions per finger: 3984 (83*2*4*6) images. Compared to the previous work, our contributions are summarized as follows: (1) Two state-of-the-art fingerprint identification methods: P071 and VeriFinger 6.1 were used, rather than one fingerprint identification method in previous studies. (2) Six impressions per finger were captured, rather than just one impression, which makes the genuine distribution of matching scores more realistic. (3) A larger sample (83 pairs) was collected. (4) A novel statistical analysis, which aims at showing the probability distribution of the fingerprint types for the corresponding fingers of identical twins which have same fingerprint type, has been conducted. (5) A novel analysis, which aims at showing which finger from identical twins has higher probability of having same fingerprint type, has been conducted. Our results showed that: (a) A state-of-the-art automatic fingerprint verification system can distinguish identical twins without drastic degradation in performance. (b) The chance that the fingerprints have the same type from identical twins is 0.7440, comparing to 0.3215 from non-identical twins. (c) For the corresponding fingers of identical twins which have same fingerprint type, the probability distribution of five major fingerprint types is similar to the probability distribution for all the fingers' fingerprint type. (d) For each of four fingers of identical twins, the probability of having same fingerprint type is similar

    Nanohybrids of Silver Particles Immobilized on Silicate Platelet for Infected Wound Healing

    Get PDF
    Silver nanoparticles supported on nanoscale silicate platelets (AgNP/NSP) possess interesting properties, including a large surface area and high biocide effectiveness. The nanohybrid of AgNP/NSP at a weight ratio 7/93 contains 5-nm Ag particles supported on the surface of platelets with dimensions of approximately 80×80×1 nm3. The nanohybrid expresses a trend of lower cytotoxicity at the concentration of 8.75 ppm Ag and low genotoxicity. Compared with conventional silver ions and the organically dispersed AgNPs, the nanohybrid promotes wound healing. We investigated overall wound healing by using acute burn and excision wound healing models. Tests on both infected wound models of mice were compared among the AgNP/NSP, polymer-dispersed AgNPs, the commercially available Aquacel, and silver sulfadiazine. The AgNP/NSP nanohybrid was superior for wound appearance, but had similar wound healing rates, vascular endothelial growth factor (VEGF)-A levels and transforming growth factor (TGF)-β1 expressions to Aquacel and silver sulfadiazine

    Efficient control of atmospheric sulfate production based on three formation regimes

    Get PDF
    The formation of sulfate (SO₄²⁻) in the atmosphere is linked chemically to its direct precursor, sulfur dioxide (SO₂), through several key oxidation paths for which nitrogen oxides or NO_x (NO and NO₂) play essential roles. Here we present a coherent description of the dependence of SO₄²⁻ formation on SO₂ and NO_x under haze-fog conditions, in which fog events are accompanied by high aerosol loadings and fog-water pH in the range of 4.7–6.9. Three SO₄²⁻ formation regimes emerge as defined by the role played by NO_x. In the low-NO_x regime, NO_x act as catalyst for HO_x, which is a major oxidant for SO₂, whereas in the high-NO_x regime, NO₂ is a sink for HO_x. Moreover, at highly elevated NO_x levels, a so-called NO₂-oxidant regime exists in which aqueous NO₂ serves as the dominant oxidant of SO₂. This regime also exists under clean fog conditions but is less prominent. Sensitivity calculations using an emission-driven box model show that the reduction of SO₄²⁻ is comparably sensitive to the reduction of SO₂ and NO_x emissions in the NO₂-oxidant regime, suggesting a co-reduction strategy. Formation of SO₄²⁻ is relatively insensitive to NO_x reduction in the low-NO_x regime, whereas reduction of NO_x actually leads to increased SO₄²⁻ production in the intermediate high-NO_x regime

    Sense and Antisense Transcripts of Convergent Gene Pairs in Arabidopsis thaliana Can Share a Common Polyadenylation Region

    Get PDF
    The Arabidopsis genome contains a large number of gene pairs that encode sense and antisense transcripts with overlapping 3′ regions, indicative for a potential role of natural antisense transcription in regulating sense gene expression or transcript processing. When we mapped poly(A) transcripts of three plant gene pairs with long overlapping antisense transcripts, we identified an unusual transcript composition for two of the three gene pairs. Both genes pairs encoded a class of long sense transcripts and a class of short sense transcripts that terminate within the same polyadenylation region as the antisense transcripts encoded by the opposite strand. We find that the presence of the short sense transcript was not dependent on the expression of an antisense transcript. This argues against the assumption that the common termination region for sense and antisense poly(A) transcripts is the result of antisense-specific regulation. We speculate that for some genes evolution may have especially favoured alternative polyadenylation events that shorten transcript length for gene pairs with overlapping sense/antisense transcription, if this reduces the likelihood for dsRNA formation and transcript degradation

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore