178 research outputs found

    Hypoxia and inflammation as a consequence of β-fibril accumulation. A perspective view for new potential therapeutic targets

    Get PDF
    Amyloidoses are heterogeneous diseases that result from the deposition of toxic insoluble β-sheet fibrillar protein aggregates in different tissues. The cascade of molecular events leading to amyloidoses and to the related clinical manifestations is not completely understood. Nevertheless, it is known that tissue damage associated to this disease involves alteration of tissue architecture, interaction with cell surface receptors, inflammation elicited by the amyloid protein deposition, oxidative stress, and apoptosis. However, another important aspect to consider is that systemic protein massive deposition not only subverts tissue architecture but also determines a progressive cellular hypertrophy and dilation of the extracellular space enlarging the volume of the organ. Such an alteration increases the distance between cells and vessels with a drop in pO2 that, in turn, causes both necrotic cell death and activation of the hypoxia transcription factor HIF-1α. Herewith, we propose the hypothesis that both cell death and hypoxia represent two important events for the pathogenesis of damage and progression of amyloidoses. In fact, molecules released by necrotic cells activate inflammatory cells from one side while binding to HIF-1α-dependent membrane receptors expressed on hypoxic parenchymal cells on the other side. This latter event generates a signaling cascade triggering NFκB activation and chronic inflammation. Finally, we also suggest that this scenario, once proved and detailed, might suggest important targets for new therapeutic interventions

    Hypoxia, inflammation and necrosis as determinants of glioblastoma cancer stem cells progression

    Get PDF
    Tumor hypoxic microenvironment causes hypoxia inducible factor 1 alpha (HIF-1ff) activation and necrosis with alarmins release. Importantly, HIF-1ff also controls the expression of alarmin receptors in tumor cells that can bind to and be activated by alarmins. Human tumor tissues possess 1-2% of cancer stem cells (CSCs) residing in hypoxic niches and responsible for the metastatic potential of tumors. Our hypothesis is that hypoxic CSCs express alarmin receptors that can bind alarmins released during necrosis, an event favoring CSCs migration. To investigate this aspect, glioblastoma stem-like cell (GSC) lines were kept under hypoxia to determine the expression of hypoxic markers as well as receptor for advanced glycation end products (RAGE). The presence of necrotic extracts increased migration, invasion and cellular adhesion. Importantly, HIF-1ff inhibition by digoxin or acriflavine prevented the response of GSCs to hypoxia alone or plus necrotic extracts. In vivo, GSCs injected in one brain hemisphere of NOD/SCID mice were induced to migrate to the other one in which a necrotic extract was previously injected. In conclusion, our results show that hypoxia is important not only for GSCs maintenance but also for guiding their response to external necrosis. Inhibition of hypoxic pathway may therefore represent a target for preventing brain invasion by glioblastoma stem cells (GSCs)

    The Protective Effect of a Unique Mix of Polyphenols and Micronutrients against Neurodegeneration Induced by an In Vitro Model of Parkinson’s Disease

    Get PDF
    : Parkinson's disease (PD) is second-most common disabling neurological disorder worldwide, and unfortunately, there is not yet a definitive way to prevent it. Polyphenols have been widely shown protective efficacy against various PD symptoms. However, data on their effect on physio-pathological mechanisms underlying this disease are still lacking. In the present work, we evaluated the activity of a mixture of polyphenols and micronutrients, named A5+, in the murine neuroblastoma cell line N1E115 treated with 6-Hydroxydopamine (6-OHDA), an established neurotoxic stimulus used to induce an in vitro PD model. We demonstrate that a pretreatment of these cells with A5+ causes significant reduction of inflammation, resulting in a decrease in pro-inflammatory cytokines (IFN-γ, IL-6, TNF-α, and CXCL1), a reduction in ROS production and activation of extracellular signal-regulated kinases (ERK)1/2, and a decrease in apoptotic mechanisms with the related increase in cell viability. Intriguingly, A5+ treatment promoted cellular differentiation into dopaminergic neurons, as evident by the enhancement in the expression of tyrosine hydroxylase, a well-established dopaminergic neuronal marker. Overall, these results demonstrate the synergic and innovative efficacy of A5+ mixture against PD cellular pathological processes, although further studies are needed to clarify the mechanisms underlying its beneficial effect

    Factors associated with maternal mortality in Sub-Saharan Africa: an ecological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maternal health is one of the major worldwide health challenges. Currently, the unacceptably high levels of maternal mortality are a common subject in global health and development discussions. Although some countries have made remarkable progress, half of the maternal deaths in the world still take place in Sub-Saharan Africa where little or no progress has been made. There is no single simple, straightforward intervention that will significantly decrease maternal mortality alone; however, there is a consensus on the importance of a strong health system, skilled delivery attendants, and women's rights for maternal health. Our objective was to describe and determine different factors associated with the maternal mortality ratio in Sub-Saharan countries.</p> <p>Methods</p> <p>An ecological multi-group study compared variables between many countries in Sub-Saharan Africa using data collected between 1997 and 2006. The dependent variable was the maternal mortality ratio, and Health care system-related, educational and economic indicators were the independent variables. Information sources included the WHO, World Bank, UNICEF and UNDP.</p> <p>Results</p> <p>Maternal mortality ratio values in Sub-Saharan Africa were demonstrated to be high and vary enormously among countries. A relationship between the maternal mortality ratio and some educational, sanitary and economic factors was observed. There was an inverse and significant correlation of the maternal mortality ratio with prenatal care coverage, births assisted by skilled health personnel, access to an improved water source, adult literacy rate, primary female enrolment rate, education index, the Gross National Income per capita and the per-capita government expenditure on health.</p> <p>Conclusions</p> <p>Education and an effective and efficient health system, especially during pregnancy and delivery, are strongly related to maternal death. Also, macro-economic factors are related and could be influencing the others.</p

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    An Integrated Bioinformatics Approach Identifies Elevated Cyclin E2 Expression and E2F Activity as Distinct Features of Tamoxifen Resistant Breast Tumors

    Get PDF
    Approximately half of estrogen receptor (ER) positive breast tumors will fail to respond to endocrine therapy. Here we used an integrative bioinformatics approach to analyze three gene expression profiling data sets from breast tumors in an attempt to uncover underlying mechanisms contributing to the development of resistance and potential therapeutic strategies to counteract these mechanisms. Genes that are differentially expressed in tamoxifen resistant vs. sensitive breast tumors were identified from three different publically available microarray datasets. These differentially expressed (DE) genes were analyzed using gene function and gene set enrichment and examined in intrinsic subtypes of breast tumors. The Connectivity Map analysis was utilized to link gene expression profiles of tamoxifen resistant tumors to small molecules and validation studies were carried out in a tamoxifen resistant cell line. Despite little overlap in genes that are differentially expressed in tamoxifen resistant vs. sensitive tumors, a high degree of functional similarity was observed among the three datasets. Tamoxifen resistant tumors displayed enriched expression of genes related to cell cycle and proliferation, as well as elevated activity of E2F transcription factors, and were highly correlated with a Luminal intrinsic subtype. A number of small molecules, including phenothiazines, were found that induced a gene signature in breast cancer cell lines opposite to that found in tamoxifen resistant vs. sensitive tumors and the ability of phenothiazines to down-regulate cyclin E2 and inhibit proliferation of tamoxifen resistant breast cancer cells was validated. Our findings demonstrate that an integrated bioinformatics approach to analyze gene expression profiles from multiple breast tumor datasets can identify important biological pathways and potentially novel therapeutic options for tamoxifen-resistant breast cancers

    Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma

    Get PDF
    Fenretinide induces apoptosis in neuroblastoma by induction of reactive oxygen species (ROS). In this study, we investigated the role of mitochondria in fenretinide-induced cytotoxicity and ROS production in six neuroblastoma cell lines. ROS induction by fenretinide was of mitochondrial origin, demonstrated by detection of superoxide with MitoSOX, the scavenging effect of the mitochondrial antioxidant MitoQ and reduced ROS production in cells without a functional mitochondrial respiratory chain (Rho zero cells). In digitonin-permeabilized cells, a fenretinide concentration-dependent decrease in ATP synthesis and substrate oxidation was observed, reflecting inhibition of the mitochondrial respiratory chain. However, inhibition of the mitochondrial respiratory chain was not required for ROS production. Co-incubation of fenretinide with inhibitors of different complexes of the respiratory chain suggested that fenretinide-induced ROS production occurred via complex II. The cytotoxicity of fenretinide was exerted through the generation of mitochondrial ROS and, at higher concentrations, also through inhibition of the mitochondrial respiratory chain

    Expression of the proapoptotic protein Bid is an adverse prognostic factor for radiotherapy outcome in carcinoma of the cervix

    Get PDF
    The Bcl-2 family of apoptotic regulators is thought to play an essential role in cancer development and influence the sensitivity of tumour cells to radiotherapy. Bid is an abundantly expressed Bcl-2 family protein playing a central role in various pathways of apoptosis by integrating and converging signals at the mitochondria. The relevance of apoptotic modulation by Bcl-2 and related proteins in tumour development and radiation response for human tumours remains undefined. Therefore, a study was made regarding the expression of Bid in patients with locally advanced cervix carcinoma who received radiotherapy. Bid expression was assessed using immunohistochemistry in pretreatment archival biopsies from 98 patients. The data were correlated with clinicopathologic characteristics and treatment outcome. Pretreatment tumour radiosensitivity data were available for 60 patients. Strong Bid expression was associated with a patient age less than the median of 52 years (P=0.034) and poor metastasis-free survival. In multivariate analysis, after allowing for stage, Bid expression was a significant prognostic factor for both disease-specific and metastasis-free survival (P=0.026). It is concluded that strong tumour Bid expression is associated with poor outcome following radiotherapy regardless of intrinsic tumour cell radiosensitivity, and is adverse prognostic for disease-specific and metastasis-free survival in younger patients

    Paternity and Dominance Loss in Male Breeders: The Cost of Helpers in a Cooperatively Breeding Mammal

    Get PDF
    Paternity insurance and dominance tenure length are two important components of male reproductive success, particularly in species where reproduction is highly skewed towards a few individuals. Identifying the factors affecting these two components is crucial to better understand the pattern of variation in reproductive success among males. In social species, the social context (i.e. group size and composition) is likely to influence the ability of males to secure dominance and to monopolize reproduction. Most studies have analyzed the factors affecting paternity insurance and dominance tenure separately. We use a long term data set on Alpine marmots to investigate the effect of the number of subordinate males on both paternity insurance and tenure of dominant males. We show that individuals which are unable to monopolize reproduction in their family groups in the presence of many subordinate males are likely to lose dominance the following year. We also report that dominant males lose body mass in the year they lose both paternity and dominance. Our results suggest that controlling many subordinate males is energetically costly for dominant males, and those unable to support this cost lose the control over both reproduction and dominance. A large number of subordinate males in social groups is therefore costly for dominant males in terms of fitness
    corecore