109 research outputs found

    Targeted Energy Transfer and Modal Energy Redistribution in Automotive Drivetrains

    Get PDF
    The new generations of compact high output power-to-weight ratio internal combustion engines generate broadband torsional oscillations, transmitted to lightly damped drivetrain systems. A novel approach to mitigate these untoward vibrations can be the use of nonlinear absorbers. These act as Nonlinear Energy Sinks (NESs). The NES is coupled to the primary (drivetrain) structure, inducing passive irreversible targeted energy transfer (TET) from the drivetrain system to the NES. During this process, the vibration energy is directed from the lower-frequency modes of the structure to the higher ones. Thereafter, vibrations can be either dissipated through structural damping or consumed by the NES. This paper uses a lumped parameter model of an automotive driveline to simulate the effect of TET and the assumed modal energy redistribution. Significant redistribution of vibratory energy is observed through TET. Furthermore, the integrated optimization process highlights the most effective configuration and parametric evaluation for use of NES

    A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds

    Get PDF
    The pallido-recipient thalamus transmits information from the basal ganglia to the cortex and is critical for motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the basal ganglia, but the role of nonpallidal inputs, such as excitatory inputs from cortex, remains unclear. We simultaneously recorded from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a basal ganglia–recipient thalamic nucleus that is necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor cortical nucleus that is also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals that are important for exploratory behavior and learning.National Institutes of Health (U.S.) (Grant R01DC009183)National Institutes of Health (U.S.) (Grant K99NS067062)Damon Runyon Cancer Research Foundation (Postdoctoral Fellowship)Charles A. King Trust (Postdoctoral Fellowship

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Analysis of Mitochondrial DNA Sequences in Childhood Encephalomyopathies Reveals New Disease-Associated Variants

    Get PDF
    BACKGROUND: Mitochondrial encephalomyopathies are a heterogeneous group of clinical disorders generally caused due to mutations in either mitochondrial DNA (mtDNA) or nuclear genes encoding oxidative phosphorylation (OXPHOS). We analyzed the mtDNA sequences from a group of 23 pediatric patients with clinical and morphological features of mitochondrial encephalopathies and tried to establish a relationship of identified variants with the disease. METHODOLOGY/PRINCIPLE FINDINGS: Complete mitochondrial genomes were amplified by PCR and sequenced by automated DNA sequencing. Sequencing data was analyzed by SeqScape software and also confirmed by BLASTn program. Nucleotide sequences were compared with the revised Cambridge reference sequence (CRS) and sequences present in mitochondrial databases. The data obtained shows that a number of known and novel mtDNA variants were associated with the disease. Most of the non-synonymous variants were heteroplasmic (A4136G, A9194G and T11916A) suggesting their possibility of being pathogenic in nature. Some of the missense variants although homoplasmic were showing changes in highly conserved amino acids (T3394C, T3866C, and G9804A) and were previously identified with diseased conditions. Similarly, two other variants found in tRNA genes (G5783A and C8309T) could alter the secondary structure of Cys-tRNA and Lys-tRNA. Most of the variants occurred in single cases; however, a few occurred in more than one case (e.g. G5783A and A10149T). CONCLUSIONS AND SIGNIFICANCE: The mtDNA variants identified in this study could be the possible cause of mitochondrial encephalomyopathies with childhood onset in the patient group. Our study further strengthens the pathogenic score of known variants previously reported as provisionally pathogenic in mitochondrial diseases. The novel variants found in the present study can be potential candidates for further investigations to establish the relationship between their incidence and role in expressing the disease phenotype. This study will be useful in genetic diagnosis and counseling of mitochondrial diseases in India as well as worldwide

    Electrophysiological Correlates of Strategic Monitoring in Event-Based and Time-Based Prospective Memory

    Get PDF
    Prospective memory (PM) is the ability to remember to accomplish an action when a particular event occurs (i.e., event-based PM), or at a specific time (i.e., time-based PM) while performing an ongoing activity. Strategic Monitoring is one of the basic cognitive functions supporting PM tasks, and involves two mechanisms: a retrieval mode, which consists of maintaining active the intention in memory; and target checking, engaged for verifying the presence of the PM cue in the environment. The present study is aimed at providing the first evidence of event-related potentials (ERPs) associated with time-based PM, and at examining differences and commonalities in the ERPs related to Strategic Monitoring mechanisms between event- and time-based PM tasks

    Black race as a predictor of poor health outcomes among a national cohort of HIV/AIDS patients admitted to US hospitals: a cohort study

    Get PDF
    BACKGROUND: In general, the Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) population has begun to experience the benefits of highly active antiretroviral therapy (HAART); unfortunately, these benefits have not extended equally to Blacks in the United States, possibly due to differences in patient comorbidities and demographics. These differences include rates of hepatitis B and C infection, substance use, and socioeconomic status. To investigate the impact of these factors, we compared hospital mortality and length of stay (LOS) between Blacks and Whites with HIV/AIDS while adjusting for differences in these key characteristics. METHODS: The 1996-2006 National Hospital Discharge Surveys were used to identify HIV/AIDS patients admitted to US hospitals. Survey weights were incorporated to provide national estimates. Patients < 18 years of age, those who left against medical advice, those with an unknown discharge disposition and those with a LOS < 1 day were excluded. Patients were stratified into subgroups by race (Black or White). Two multivariable logistic regression models were constructed with race as the independent variable and outcomes (mortality and LOS > 10 days) as the dependent variables. Factors that were significantly different between Blacks and Whites at baseline via bivariable statistical tests were included as covariates. RESULTS: In the general US population, there are approximately 5 times fewer Blacks than Whites. In the present study, 1.5 million HIV/AIDS hospital discharges were identified and Blacks were 6 times more likely to be hospitalized than Whites. Notably, Blacks had higher rates of substance use (30% vs. 24%; P < 0.001), opportunistic infections (27% vs. 26%; P < 0.001) and cocaine use (13% vs. 5%; P < 0.001). Conversely, fewer Blacks were co-infected with hepatitis C virus (8% vs. 12%; P < 0.001). Hepatitis B virus was relatively infrequent (3% for both groups). Crude mortality rates were similar for both cohorts (5%); however, a greater proportion of Blacks had a LOS > 10 days (21% vs. 19%; P < 0.001). Black race, in the presence of comorbidities, was correlated with a higher odds of LOS > 10 days (OR, 95% CI = 1.20 [1.10-1.30]), but was not significantly correlated with a higher odds of mortality (OR, 95% CI = 1.07 [0.93-1.25]). CONCLUSION: Black race is a predictor of LOS > 10 days, but not mortality, among HIV/AIDS patients admitted to US hospitals. It is possible that racial disparities in hospital outcomes may be closing with time

    Triadin/Junctin Double Null Mouse Reveals a Differential Role for Triadin and Junctin in Anchoring CASQ to the jSR and Regulating Ca2+ Homeostasis

    Get PDF
    Triadin (Tdn) and Junctin (Jct) are structurally related transmembrane proteins thought to be key mediators of structural and functional interactions between calsequestrin (CASQ) and ryanodine receptor (RyRs) at the junctional sarcoplasmic reticulum (jSR). However, the specific contribution of each protein to the jSR architecture and to excitation-contraction (e-c) coupling has not been fully established. Here, using mouse models lacking either Tdn (Tdn-null), Jct (Jct-null) or both (Tdn/Jct-null), we identify Tdn as the main component of periodically located anchors connecting CASQ to the RyR-bearing jSR membrane. Both proteins proved to be important for the structural organization of jSR cisternae and retention of CASQ within them, but with different degrees of impact. Our results also suggest that the presence of CASQ is responsible for the wide lumen of the jSR cisternae. Using Ca2+ imaging and Ca2+ selective microelectrodes we found that changes in e-c coupling, SR Ca2+content and resting [Ca2+] in Jct, Tdn and Tdn/Jct-null muscles are directly correlated to the effect of each deletion on CASQ content and its organization within the jSR. These data suggest that in skeletal muscle the disruption of Tdn/CASQ link has a more profound effect on jSR architecture and myoplasmic Ca2+ regulation than Jct/CASQ association

    Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies

    Get PDF
    The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing
    corecore