123 research outputs found
Existence and Stability of Symmetric Periodic Simultaneous Binary Collision Orbits in the Planar Pairwise Symmetric Four-Body Problem
We extend our previous analytic existence of a symmetric periodic
simultaneous binary collision orbit in a regularized fully symmetric equal mass
four-body problem to the analytic existence of a symmetric periodic
simultaneous binary collision orbit in a regularized planar pairwise symmetric
equal mass four-body problem. We then use a continuation method to numerically
find symmetric periodic simultaneous binary collision orbits in a regularized
planar pairwise symmetric 1, m, 1, m four-body problem for between 0 and 1.
Numerical estimates of the the characteristic multipliers show that these
periodic orbits are linearly stability when , and are
linearly unstable when .Comment: 6 figure
Topped MAC with extra dimensions?
We perform the most attractive channel (MAC) analysis in the top mode
standard model with TeV-scale extra dimensions, where the standard model gauge
bosons and the third generation of quarks and leptons are put in D(=6,8,10,...)
dimensions. In such a model, bulk gauge couplings rapidly grow in the
ultraviolet region. In order to make the scenario viable, only the attractive
force of the top condensate should exceed the critical coupling, while other
channels such as the bottom and tau condensates should not. We then find that
the top condensate can be the MAC for D=8, whereas the tau condensation is
favored for D=6. The analysis for D=10 strongly depends on the regularization
scheme. We predict masses of the top (m_t) and the Higgs (m_H), m_t=172-175 GeV
and m_H=176-188 GeV for D=8, based on the renormalization group for the top
Yukawa and Higgs quartic couplings with the compositeness conditions at the
scale where the bulk top condenses. The Higgs boson in such a characteristic
mass range will be immediately discovered in H -> WW^(*)/ZZ^(*) once the LHC
starts.Comment: REVTEX4, 24 pages, 21 figures, to appear in PRD. The title is changed
in PRD. One reference added, typos correcte
Beware Cold Agglutinins in Organ Donors! Ex Vivo Lung Perfusion From an Uncontrolled Donation After Circulatory-Determination-of-Death Donor With a Cold Agglutinin: A Case Report
Background We began to recover lungs from uncontrolled donation after circulatory determination of death to assess for transplant suitability by means of ex vivo lung perfusion (EVLP) and computerized tomographic (CT) scan. Our first case had a cold agglutinin with an interesting outcome. Case report A 60-year-old man collapsed at home and was pronounced dead by Emergency Medical Services personnel. Next-of-kin consented to lung retrieval, and the decedent was ventilated and transported. Lungs were flushed with cold Perfadex, removed, and stored cold. The lungs did not flush well. Medical history revealed a recent hemolytic anemia and a known cold agglutinin. Warm nonventilated ischemia time was 51 minutes. O2-ventilated ischemia time was 141 minutes. Total cold ischemia time was 6.5 hours. At cannulation for EVLP, established clots were retrieved from both pulmonary arteries. At initiation of EVLP with Steen solution, tiny red aggregates were observed initially. With warming, the aggregates disappeared and the perfusate became red. After 1 hour, EVLP was stopped because of florid pulmonary edema. The lungs were cooled to 20°C; tiny red aggregates formed again in the perfusate. Ex vivo CT scan showed areas of pulmonary edema and a pyramidal right middle lobe opacity. Dissection showed multiple pulmonary emboli—the likely cause of death. However, histology showed agglutinated red blood cells in the microvasculature in pre- and post-EVLP biopsies, which may have contributed to inadequate parenchymal preservation. Conclusions Organ donors with cold agglutinins may not be suitable owing to the impact of hypothermic preservation
Dynamical chiral symmetry breaking in gauge theories with extra dimensions
We investigate dynamical chiral symmetry breaking in vector-like gauge
theories in dimensions with () compactified extra dimensions, based on
the gap equation (Schwinger-Dyson equation) and the effective potential for the
bulk gauge theories within the improved ladder approximation. The non-local
gauge fixing method is adopted so as to keep the ladder approximation
consistent with the Ward-Takahashi identities.
Using the one-loop gauge coupling of the truncated KK
effective theory which has a nontrivial ultraviolet fixed point (UV-FP)
for the (dimensionless) bulk gauge coupling , we find that there
exists a critical number of flavors, ( for
for SU(3) gauge theory): For , the dynamical
chiral symmetry breaking takes place not only in the ``strong-coupling phase''
() but also in the ``weak-coupling phase'' ()
when the cutoff is large enough. For , on the other hand,
only the strong-coupling phase is a broken phase and we can formally define a
continuum (infinite cutoff) limit, so that the physics is insensitive to the
cutoff in this case.
We also perform a similar analysis using the one-loop ``effective gauge
coupling''. We find the turns out to be a value similar to
that of the case, notwithstanding the enhancement of the
coupling compared with that of the .Comment: REVTEX4, 38 pages, 18 figures. The abstract is shortened; version to
be published in Phys. Rev.
Minimal Composite Higgs Model with Light Bosons
We analyze a composite Higgs model with the minimal content that allows a
light Standard-Model-like Higgs boson, potentially just above the current LEP
limit. The Higgs boson is a bound state made up of the top quark and a heavy
vector-like quark. The model predicts that only one other bound state may be
lighter than the electroweak scale, namely a CP-odd neutral scalar. Several
other composite scalars are expected to have masses in the TeV range. If the
Higgs decay into a pair of CP-odd scalars is kinematically open, then this
decay mode is dominant, with important implications for Higgs searches. The
lower bound on the CP-odd scalar mass is loose, in some cases as low as
100 MeV, being set only by astrophysical constraints.Comment: 33 pages, latex. Corrections in eqs. 3.21, 3.23, 4.1, 4.5-10. One
figure adde
Lepton flavor violation decays in the topcolor-assisted technicolor model and the littlest Higgs model with parity
The new particles predicted by the topcolor-assisted technicolor ()
model and the littlest Higgs model with T-parity (called model) can
induce the lepton flavor violation () couplings at tree level or one loop
level, which might generate large contributions to some processes. Taking
into account the constraints of the experimental data on the relevant free
parameters, we calculate the branching ratios of the decay processes
with = , and
in the context of these two kinds of new physics models. We find
that the model and the model can indeed produce significant
contributions to some of these decay processes.Comment: 24 pages, 7 figure
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
- …