387 research outputs found

    X-chromosome-linked miR548am-5p is a key regulator of sex disparity in the susceptibility to mitochondria-mediated apoptosis.

    Get PDF
    Sex dimorphism in cell response to stress has previously been investigated by different research groups. This dimorphism could be at least in part accounted for by sex-biased expression of regulatory elements such as microRNAs (miRs). In order to spot previously unknown miR expression differences we took advantage of prior knowledge on specialized databases to identify X chromosome-encoded miRs potentially escaping X chromosome inactivation (XCI). MiR-548am-5p emerged as potentially XCI escaper and was experimentally verified to be significantly up-regulated in human XX primary dermal fibroblasts (DFs) compared to XY ones. Accordingly, miR-548am-5p target mRNAs, e.g. the transcript for Bax, was differently modulated in XX and XY DFs. Functional analyses indicated that XY DFs were more prone to mitochondria-mediated apoptosis than XX ones. Experimentally induced overexpression of miR548am-5p in XY cells by lentivirus vector transduction decreased apoptosis susceptibility, whereas its down-regulation in XX cells enhanced apoptosis susceptibility. These data indicate that this approach could be used to identify previously unreported sex-biased differences in miR expression and that a miR identified with this approach, miR548am-5p, can account for sex-dependent differences observed in the susceptibility to mitochondrial apoptosis of human DFs

    Identification of single nucleotide polymorphisms in the p21 (CDKN1A) gene and correlations with longevity in the Italian population

    Get PDF
    Longevity in humans is determined by multiple environmental and genetic factors. We have investigated possible associations between longevity and Single Nucleotide Polymorphisms (SNPs) in the p21 (CDKN1A) gene, a stress-inducible senescence-associated cell cycle inhibitor, expression of which upregulates genes implicated in several age-related diseases. By sequencing the promoter and exons of p21 in genomic DNA of ten individuals over 90 years old, we have identified 30 SNPs, many of which had not been previously characterized. A cluster of minor alleles within the -4547/-3489 bp region did not alter the basal activity or p53 responsiveness of the p21 promoter. We then compared the frequency of 41 p21 SNPs between 184 centenarians and 184 younger subjects in the Italian population. Rare alleles of two exon-derived SNPs, rs1801270 and rs1059234, were significantly under-represented among the centenarians; no significant differences were found for 39 non-exonic SNPs. SNP rs1801270 causes Ser to Arg substitution at amino acid 31 and SNP rs1059234 leads to a nucleotide change in the 3'-untranslated region. Previous studies showed that the rare alleles of these two SNPs may play a role in cancer. These p21 alleles may be potentially detrimental to longevity and therefore are rare in centenarians

    Non-nucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy is associated with lower cell-associated HIV RNA and DNA levels compared to protease inhibitor-based therapy

    Get PDF
    Background: It remains unclear whether combination antiretroviral therapy (ART) regimens differ in their ability to fully suppress human immunodeficiency virus (HIV) replication. Here, we report the results of two cross-sectional studies that compared levels of cell-associated (CA) HIV markers between individuals receiving suppressive ART containing either a non-nucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI). Methods: CA HIV unspliced RNA and total HIV DNA were quantified in two cohorts (n = 100, n = 124) of individuals treated with triple ART regimens consisting of two nucleoside reverse transcriptase inhibitors (NRTIs) plus either an NNRTI or a PI. To compare CA HIV RNA and DNA levels between the regimens, we built multivariable models adjusting for age, gender, current and nadir CD4+ count, plasma viral load zenith, duration of virological suppression, NRTI backbone composition, low-level plasma HIV RNA detectability, and electronically measured adherence to ART. Results: In both cohorts, levels of CA HIV RNA and DNA strongly correlated (rho = 0.70 and rho = 0.54) and both markers were lower in NNRTI-treated than in PI-treated individuals. In the multivariable analysis, CA RNA in both cohorts remained significantly reduced in NNRTI-treated individuals (padj = 0.02 in both cohorts), with a similar but weaker association between the ART regimen and total HIV DNA (padj = 0.048 and padj = 0.10). No differences in CA HIV RNA or DNA levels were observed between individual NNRTIs or individual PIs, but CA HIV RNA was lower in individuals treated with either nevirapine or efavirenz, compared to PI-treated individuals. Conclusions: All current classes of antiretroviral drugs only prevent infection of new cells but do not inhibit HIV RNA transcription in long-lived reservoir cells. Therefore, these differences in CA HIV RNA and DNA levels by treatment regimen suggest that NNRTIs are more potent in suppressing HIV residual replication than PIs, which may result in a smaller viral reservoir size

    Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective

    Get PDF
    According to the Geroscience concept that organismal aging and age-associated diseases share the same basic molecular mechanisms, the identification of biomarkers of age that can efficiently classify people as biologically older (or younger) than their chronological (i.e. calendar) age is becoming of paramount importance. These people will be in fact at higher (or lower) risk for many different age-associated diseases, including cardiovascular diseases, neurodegeneration, cancer, etc. In turn, patients suffering from these diseases are biologically older than healthy age-matched individuals. Many biomarkers that correlate with age have been described so far. The aim of the present review is to discuss the usefulness of some of these biomarkers (especially soluble, circulating ones) in order to identify frail patients, possibly before the appearance of clinical symptoms, as well as patients at risk for age-associated diseases. An overview of selected biomarkers will be discussed in this regard, in particular we will focus on biomarkers related to metabolic stress response, inflammation, and cell death (in particular in neurodegeneration), all phenomena connected to inflammaging (chronic, low-grade, age-associated inflammation). In the second part of the review, next-generation markers such as extracellular vesicles and their cargos, epigenetic markers and gut microbiota composition, will be discussed. Since recent progresses in omics techniques have allowed an exponential increase in the production of laboratory data also in the field of biomarkers of age, making it difficult to extract biological meaning from the huge mass of available data, Artificial Intelligence (AI) approaches will be discussed as an increasingly important strategy for extracting knowledge from raw data and providing practitioners with actionable information to treat patients

    Evidence for sub-haplogroup h5 of mitochondrial DNA as a risk factor for late onset Alzheimer's disease

    Get PDF
    BACKGROUND: Alzheimer's Disease (AD) is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA) for the respiratory chain, there have been a number of studies investigating the association between mtDNA inherited variants and multifactorial diseases, however no general consensus has been reached yet on the correlation between mtDNA haplogroups and AD. METHODOLOGY/PRINCIPAL FINDINGS: We applied for the first time a high resolution analysis (sequencing of displacement loop and restriction analysis of specific markers in the coding region of mtDNA) to investigate the possible association between mtDNA-inherited sequence variation and AD in 936 AD patients and 776 cognitively assessed normal controls from central and northern Italy. Among over 40 mtDNA sub-haplogroups analysed, we found that sub-haplogroup H5 is a risk factor for AD (OR=1.85, 95% CI:1.04-3.23) in particular for females (OR=2.19, 95% CI:1.06-4.51) and independently from the APOE genotype. Multivariate logistic regression revealed an interaction between H5 and age. When the whole sample is considered, the H5a subgroup of molecules, harboring the 4336 transition in the tRNAGln gene, already associated to AD in early studies, was about threefold more represented in AD patients than in controls (2.0% vs 0.8%; p=0.031), and it might account for the increased frequency of H5 in AD patients (4.2% vs 2.3%). The complete re-sequencing of the 56 mtDNAs belonging to H5 revealed that AD patients showed a trend towards a higher number (p=0.052) of sporadic mutations in tRNA and rRNA genes when compared with controls. CONCLUSIONS: Our results indicate that high resolution analysis of inherited mtDNA sequence variation can help in identifying both ancient polymorphisms defining sub-haplogroups and the accumulation of sporadic mutations associated with complex traits such as AD

    Establishment of a national network of cetacean monitoring within the marine strategy

    Get PDF
    CONISMA, CNR and CIRCE, involved Italian research units (RUs) working on cetaceans to joina National Network answering the Marine Strategy Framework Directive (MSFD) requirements by sharing monitoring data. Data obtained during the 2016 monitoring campaigns by 13 RUs are presented here

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Low infra red laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considerable interest has been aroused in recent years by the well-known notion that biological systems are sensitive to visible light. With clinical applications of visible radiation in the far-red to near-infrared region of the spectrum in mind, we explored the effect of coherent red light irradiation with extremely low energy transfer on a neural cell line derived from rat pheochromocytoma. We focused on the effect of pulsed light laser irradiation vis-à-vis two distinct biological effects: neurite elongation under NGF stimulus on laminin-collagen substrate and cell viability during oxidative stress.</p> <p>Methods</p> <p>We used a 670 nm laser, with extremely low peak power output (3 mW/cm<sup>2</sup>) and at an extremely low dose (0.45 mJ/cm<sup>2</sup>). Neurite elongation was measured over three days in culture. The effect of coherent red light irradiation on cell reaction to oxidative stress was evaluated through live-recording of mitochondria membrane potential (MMP) using JC1 vital dye and laser-confocal microscopy, in the absence (photo bleaching) and in the presence (oxidative stress) of H<sub>2</sub>O<sub>2</sub>, and by means of the MTT cell viability assay.</p> <p>Results</p> <p>We found that laser irradiation stimulates NGF-induced neurite elongation on a laminin-collagen coated substrate and protects PC12 cells against oxidative stress.</p> <p>Conclusion</p> <p>These data suggest that red light radiation protects the viability of cell culture in case of oxidative stress, as indicated by MMP measurement and MTT assay. It also stimulates neurite outgrowth, and this effect could also have positive implications for axonal protection.</p
    corecore