398 research outputs found

    Antioxidant and Antihypertensive Activity Egg White Powder Produced by Pan Drying at Different Temperature and Drying Time

    Get PDF
    Antioxidant and antihypertensive (ACE-Inhibitors) are commonly known as bioactive molecules in foodstuff. Both molecules can be obtained naturally or through processing and preservation of egg white of poultry eggs. One way of preserving the egg white with drying method is by pan drying method. The objective of this study was to determine an appropriate temperature and drying time to produce high yield of antioxidant and antihypertensive activity. The materials used for this study were 900 eggs which were obtained from the same farm. That amount was calculated based on the number of experimental units required to run the experiment with the total number of treatment (3 x 3) with 4 replications for each treatment combination giving 25 chicken eggs for each treatment. The experiment was carried out using a 3x3 factorial arrangement according to completely randomized design. The first factor was drying temperature, i.e. 45oC, 50oC, and 55oC and the second factor was drying time, i.e. 30h, 39h, and 48h. The results showed that high antioxidant activity was found on egg white which was dried at temperature of 45oC for 39 hours which reached 26.85%. However, antihypertensive activity was optimum at 50oC and drying for 48 hours, which was up to 75.06%. Drying the egg white using appropriate temperature and time may improve the antioxidant and antihypertensive activities

    Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor

    Full text link
    The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of Fe-based superconductivity in 2008. It also blows the superconductivity community by surprise because such a high Tc is unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at ambient pressure which can be enhanced to 38 K under high pressure. The Tc is still unusually high even considering the newly-discovered intercalated FeSe system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient pressure and possible Tc near 48 K under high pressure. Particularly interesting is that such a high temperature superconductivity occurs in a single-layer FeSe system that is considered as a key building block of the Fe-based superconductors. Understanding the origin of high temperature superconductivity in such a strictly two-dimensional FeSe system is crucial to understanding the superconductivity mechanism in Fe-based superconductors in particular, and providing key insights on how to achieve high temperature superconductivity in general. Here we report distinct electronic structure associated with the single-layer FeSe superconductor. Its Fermi surface topology is different from other Fe-based superconductors; it consists only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. Our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. These results have provided an unambiguous case that such a unique electronic structure is favorable for realizing high temperature superconductivity

    Effects of Thioglycolic Acid on Parthenogenetic Activation of Xenopus Oocytes

    Get PDF
    BACKGROUND: Existing in Permanent-wave solutions (PWS), thioglycolic acid (TGA) is widely used in hairdressing industry for its contribution to hair styling. However, the toxicity of TGA, especially its reproductive toxicity, gradually calls the attention of more and more researchers. METHOD: In this work, xenopus oocytes were pretreated with different concentration of TGA, and then activated by calcium ionophore A23187. During culture, the oocytes activation rates were taken note at different time after adding calcium ionophore A23187. At the end of the culture period, the nuclear status was detected under confocal microscope. In addition, some other samples were collected for Western-Blotting analysis. RESULT: TGA significantly inhibited the oocytes activation rate and pronuclear formation. It may be resulted from the inhibition of the degradation of p-ERK1, Mos and CyclinB2. CONCLUSION: TGA inhibits in vitro parthenogenetic activation of xenopus oocytes with inhibited the degradation of proteins involved in mitogenic-activated protein kinase (MAPK) and maturation-promoting factor (MPF) pathways

    Virus genomes and virus-host interactions in aquaculture animals

    Full text link

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    The Survey of H5N1 Flu Virus in Wild Birds in 14 Provinces of China from 2004 to 2007

    Get PDF
    The highly pathogenic H5N1 avian influenza emerged in the year 1996 in Asia, and has spread to Europe and Africa recently. At present, effective monitoring and data analysis of H5N1 are not sufficient in Chinese mainland.)) were obviously higher than those in other 13 provinces. The results of sequence analysis indicated that the 17 strains isolated from wild birds were distributed in five clades (2.3.1, 2.2, 2.5, 6, and 7), which suggested that genetic diversity existed among H5N1 viruses isolated from wild birds. The five isolates from Qinghai came from one clade (2.2) and had a short evolutionary distance with the isolates obtained from Qinghai in the year 2005.We have measured the prevalence of H5N1 virus in 56 species of wild birds in 14 provinces of China. Continuous monitoring in the field should be carried out to know whether H5N1 virus can be maintained by wild birds

    Phase Diagram and High Temperature Superconductivity at 65 K in Tuning Carrier Concentration of Single-Layer FeSe Films

    Full text link
    Superconductivity in the cuprate superconductors and the Fe-based superconductors is realized by doping the parent compound with charge carriers, or by application of high pressure, to suppress the antiferromagnetic state. Such a rich phase diagram is important in understanding superconductivity mechanism and other physics in the Cu- and Fe-based high temperature superconductors. In this paper, we report a phase diagram in the single-layer FeSe films grown on SrTiO3 substrate by an annealing procedure to tune the charge carrier concentration over a wide range. A dramatic change of the band structure and Fermi surface is observed, with two distinct phases identified that are competing during the annealing process. Superconductivity with a record high transition temperature (Tc) at ~65 K is realized by optimizing the annealing process. The wide tunability of the system across different phases, and its high-Tc, make the single-layer FeSe film ideal not only to investigate the superconductivity physics and mechanism, but also to study novel quantum phenomena and for potential applications.Comment: 15 pages, 4 figure

    Prokineticin 2 Regulates the Electrical Activity of Rat Suprachiasmatic Nuclei Neurons

    Get PDF
    Neuropeptide signaling plays roles in coordinating cellular activities and maintaining robust oscillations within the mammalian suprachiasmatic nucleus (SCN). Prokineticin2 (PK2) is a signaling molecule from the SCN and involves in the generation of circadian locomotor activity. Prokineticin receptor 2 (PKR2), a receptor for PK2, has been shown to be expressed in the SCN. However, very little is known about the cellular action of PK2 within the SCN. In the present study, we investigated the effect of PK2 on spontaneous firing and miniature inhibitory postsynaptic currents (mIPSCs) using whole cell patch-clamp recording in the SCN slices. PK2 dose-dependently increased spontaneous firing rates in most neurons from the dorsal SCN. PK2 acted postsynaptically to reduce γ-aminobutyric acid (GABA)-ergic function within the SCN, and PK2 reduced the amplitude but not frequency of mIPSCs. Furthermore, PK2 also suppressed exogenous GABA-induced currents. And the inhibitory effect of PK2 required PKC activation in the postsynaptic cells. Our data suggest that PK2 could alter cellular activities within the SCN and may influence behavioral and physiological rhythms
    corecore