The latest discovery of high temperature superconductivity signature in
single-layer FeSe is significant because it is possible to break the
superconducting critical temperature ceiling (maximum Tc~55 K) that has been
stagnant since the discovery of Fe-based superconductivity in 2008. It also
blows the superconductivity community by surprise because such a high Tc is
unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at
ambient pressure which can be enhanced to 38 K under high pressure. The Tc is
still unusually high even considering the newly-discovered intercalated FeSe
system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient
pressure and possible Tc near 48 K under high pressure. Particularly
interesting is that such a high temperature superconductivity occurs in a
single-layer FeSe system that is considered as a key building block of the
Fe-based superconductors. Understanding the origin of high temperature
superconductivity in such a strictly two-dimensional FeSe system is crucial to
understanding the superconductivity mechanism in Fe-based superconductors in
particular, and providing key insights on how to achieve high temperature
superconductivity in general. Here we report distinct electronic structure
associated with the single-layer FeSe superconductor. Its Fermi surface
topology is different from other Fe-based superconductors; it consists only of
electron pockets near the zone corner without indication of any Fermi surface
around the zone center. Our observation of large and nearly isotropic
superconducting gap in this strictly two-dimensional system rules out existence
of node in the superconducting gap. These results have provided an unambiguous
case that such a unique electronic structure is favorable for realizing high
temperature superconductivity