551 research outputs found

    Wesson's IMT with a Weylian bulk

    Full text link
    The foundations of Wesson's induced matter theory are analyzed. It is shown that the 5D empty bulk must be regarded rather as a Weylian space than as a Riemannian one.The framework of a Weyl-Dirac version of Wesson's theory is elaborated and discussed. The bulk possesses in addition to the metric tensor a Weylian connection vector as well Dirac's gauge function; there are no sources (mass, current) in the bulk. On the 4D brane one obtains a geometrically based unified theory of gravitation and electromagnetism with mass, currents and equations induced by the 5D bulkComment: 29 page

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Investigation of the ferromagnetic transition in the correlated 4d perovskites SrRu1x_{1-x}Rhx_xO3_3

    Get PDF
    The solid-solution SrRu1x_{1-x}Rhx_xO3_3 (0x10\le x \le1) is a variable-electron-configuration system forming in the nearly-cubic-perovskite basis, ranging from the ferromagnetic 4d4d^4 to the enhanced paramagnetic 4d5d^5. Polycrystalline single-phase samples were obtained over the whole composition range by a high-pressure-heating technique, followed by measurements of magnetic susceptibility, magnetization, specific heat, thermopower, and electrical resistivity. The ferromagnetic order in long range is gradually suppressed by the Rh substitution and vanishes at x0.6x \sim 0.6. The electronic term of specific-heat shows unusual behavior near the critical Rh concentration; the feature does not match even qualitatively with what was reported for the related perovskites (Sr,Ca)RuO3_3. Furthermore, another anomaly in the specific heat was observed at x0.9x \sim 0.9.Comment: Accepted for publication in PR

    A Weyl-Dirac Cosmological Model with DM and DE

    Full text link
    In the Weyl-Dirac (W-D) framework a spatially closed cosmological model is considered. It is assumed that the space-time of the universe has a chaotic Weylian microstructure but is described on a large scale by Riemannian geometry. Locally fields of the Weyl connection vector act as creators of massive bosons having spin 1. It is suggested that these bosons, called weylons, provide most of the dark matter in the universe. At the beginning the universe is a spherically symmetric geometric entity without matter. Primary matter is created by Dirac's gauge function very close to the beginning. In the early epoch, when the temperature of the universe achieves its maximum, chaotically oriented Weyl vector fields being localized in micro-cells create weylons. In the dust dominated period Dirac's gauge function is giving rise to dark energy, the latter causing the cosmic acceleration at present. This oscillatory universe has an initial radius identical to the Plank length = 1.616 exp (-33) cm, at present the cosmic scale factor is 3.21 exp (28) cm, while its maximum value is 8.54 exp (28) cm. All forms of matter are created by geometrically based functions of the W-D theory.Comment: 25 pages. Submitted to GR

    The Self-dual String Soliton in AdS_4\times S^7 spacetime

    Full text link
    We construct self-dual string soliton solutions in AdS4×S7AdS_4\times S^7 spacetime, starting from the covariant equations of motion of M5-brane. We study the properties of the solutions and find that their action are linearized, indicating the BPS nature of the solutions, and they have the same electric and magnetic charge. The straight string soliton solution represents the configuration of the membranes ending on M5-brane with a straight string intersection, and it behaves like the spiky solution in flat spacetime. The spherical string soliton solution, which could be related to the straight one by a conformal transformation, represents the membranes ending on M5-brane with a spherical intersection.Comment: 15 pages;typos corrected, references added;published versio

    Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior

    Full text link
    Recent overwhelming evidences show that the sun strongly influences the Earth's climate and environment. Moreover existence of life on this Earth mainly depends upon the sun's energy. Hence, understanding of physics of the sun, especially the thermal, dynamic and magnetic field structures of its interior, is very important. Recently, from the ground and space based observations, it is discovered that sun oscillates near 5 min periodicity in millions of modes. This discovery heralded a new era in solar physics and a separate branch called helioseismology or seismology of the sun has started. Before the advent of helioseismology, sun's thermal structure of the interior was understood from the evolutionary solution of stellar structure equations that mimicked the present age, mass and radius of the sun. Whereas solution of MHD equations yielded internal dynamics and magnetic field structure of the sun's interior. In this presentation, I review the thermal, dynamic and magnetic field structures of the sun's interior as inferred by the helioseismology.Comment: To be published in the proceedings of the meeting "3rd International Conference on Current Developments in Atomic, Molecular, Optical and Nano Physics with Applications", December 14-16, 2011, New Delhi, Indi

    Modelling Effects of Tariff Liberalisation on India’s Key Export Sectors: Analysis of the EU–India Free Trade Agreement

    Get PDF
    Trade agreements are increasingly being negotiated between developed and emerging economy partners. An example is the EU–India Free Trade Agreement (FTA) for which negotiations began in 2007. There has been a debate on the potential effects of the proposed FTA and how this can impact on India’s key export sectors. Our study addresses this aspect from a global computable general equilibrium (CGE) modelling perspective. Using the Global Trade Analysis Project (GTAP) framework, we analyse trade and welfare impacts of the proposed FTA between the EU and India. Two scenarios are modelled: first, complete and immediate elimination of tariff on all goods traded and second, selective tariff elimination on textiles, wearing apparel and leather goods—products in which India has a comparative advantage. Results under both scenarios show that India enjoys positive welfare effects though there is a possibility of trade diversion. Under scenario 1, India loses due to a negative terms of trade (ToT) effect. Under scenario 2, with selective sectoral liberalisation, gains are mainly concentrated in the textiles, wearing apparel and leather sectors. There is a positive output effect from change in demand for factors of production, suggesting that the proposed FTA could lead to relocation of labour-intensive production to India

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Genomic basis for RNA alterations in cancer

    Get PDF
    Transcript alterations often result from somatic changes in cancer genomes. Various forms of RNA alterations have been described in cancer, including overexpression, altered splicing and gene fusions; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer

    Pharmacognostical Sources of Popular Medicine To Treat Alzheimer’s Disease

    Get PDF
    corecore