214 research outputs found

    Changes Over Time in Masters Level School Counselor Education Programs

    Get PDF
    A national survey regarding the preparation of entry-level school counseling students was conducted to assess changes over time that may have occurred in the credit hours, screening methods, faculty experiences, course content, fieldwork requirements, and importance of The Education Trust concepts. Key findings include increases in the number of faculty with school counseling experience and the number of programs requiring practicum and internship to be completed in a school setting, and decreases in the number of courses designed specifically for school counseling students and the importance of supervision

    The Importance and Implementation of Eight Components of College and Career Readiness Counseling in School Counselor Education Programs

    Get PDF
    School counselor education program administrators (N = 131) responded to an online questionnaire where the importance and extent of implementation of The College Board’s National Office of School Counselor Advocacy (NOSCA) Eight Components of College and Career Readiness in their school counselor education program were assessed. The mean importance of the components was rated between ‘moderately important’ and ‘very important’ by participants, and the components were ‘usually’ implemented in the curriculum of their programs. Implications of this study include the need for increased attention in graduate-level school counselor training programs on equity-focused college and career readiness counseling and knowledge of current national initiatives

    Changes Over Time in Masters Level School Counselor Education Programs

    Get PDF
    A national survey regarding the preparation of entry-level school counseling students was conducted to assess changes over time that may have occurred in the credit hours, screening methods, faculty experiences, course content, fieldwork requirements, and importance of The Education Trust concepts. Key findings include increases in the number of faculty with school counseling experience and the number of programs requiring practicum and internship to be completed in a school setting, and decreases in the number of courses designed specifically for school counseling students and the importance of supervision

    Effect of Airfoil Parametrization on the Optimization of Counter Rotating Open Rotors

    Get PDF
    The present study compares two optimizations performed on Counter Rotating Open Rotors (CRORs) running at the same operating condition. The main difference between the two optimizations is the airfoil profile used to construct the blades. The first, uses the NACA 16 family of airfoils, whereas the second one, uses a parametrized airfoil type, CST. Two independent multi-objective optimizations are carried out using approximately the same computational resources. All the design variables except those concerning the airfoil profile, are kept with the same design freedom so that a fair comparison can be made. Both sets of configurations are aerodynamically optimized for maximum thrust coefficient and efficiency at top of climb conditions. The optimization is performed using multi-objective Differential Evolution (DE) coupled with 3D RANS simulations and Radial Basis Function (RBF) meta-modeling

    The coordinated action of VCP/p97 and GCN2 regulates cancer cell metabolism and proteostasis during nutrient limitation

    Get PDF
    VCP/p97 regulates numerous cellular functions by mediating protein degradation through its segregase activity. Its key role in governing protein homoeostasis has made VCP/p97 an appealing anticancer drug target. Here, we provide evidence that VCP/p97 acts as a regulator of cellular metabolism. We found that VCP/p97 was tied to multiple metabolic processes on the gene expression level in a diverse range of cancer cell lines and in patient-derived multiple myeloma cells. Cellular VCP/p97 dependency to maintain proteostasis was increased under conditions of glucose and glutamine limitation in a range of cancer cell lines from different tissues. Moreover, glutamine depletion led to increased VCP/p97 expression, whereas VCP/p97 inhibition perturbed metabolic processes and intracellular amino acid turnover. GCN2, an amino acid-sensing kinase, attenuated stress signalling and cell death triggered by VCP/p97 inhibition and nutrient shortages and modulated ERK activation, autophagy, and glycolytic metabolite turnover. Together, our data point to an interconnected role of VCP/p97 and GCN2 in maintaining cancer cell metabolic and protein homoeostasis

    An engineered, quantifiable in vitro model for analysing the effect of proteostasis-targeting drugs on tissue physical properties

    Get PDF
    Cellular function depends on the maintenance of protein homeostasis (proteostasis) by regulated protein degradation. Chronic dysregulation of proteostasis is associated with neurodegenerative and age-related diseases, and drugs targeting components of the protein degradation apparatus are increasingly used in cancer therapies. However, as chronic imbalances rather than loss of function mediate their pathogenesis, research models that allow for the study of the complex effects of drugs on tissue properties in proteostasis-associated diseases are almost completely lacking. Here, to determine the functional effects of impaired proteostatic fine-tuning, we applied a combination of materials science characterisation techniques to a cell-derived, in vitro model of bone-like tissue formation in which we pharmacologically perturbed protein degradation. We show that low-level inhibition of VCP/p97 and the proteasome, two major components of the degradation machinery, have remarkably different effects on the bone-like material that human bone-marrow derived mesenchymal stromal cells (hMSC) form in vitro. Specifically, whilst proteasome inhibition mildly enhances tissue formation, Raman spectroscopic, atomic force microscopy-based indentation, and electron microscopy imaging reveal that VCP/p97 inhibition induces the formation of bone-like tissue that is softer, contains less protein, appears to have more crystalline mineral, and may involve aberrant micro- and ultra-structural tissue organisation. These observations contrast with findings from conventional osteogenic assays that failed to identify any effect on mineralisation. Taken together, these data suggest that mild proteostatic impairment in hMSC alters the bone-like material they form in ways that could explain some pathologies associated with VCP/p97-related diseases. They also demonstrate the utility of quantitative materials science approaches for tackling long-standing questions in biology and medicine, and could form the basis for preclinical drug testing platforms to develop therapies for diseases stemming from perturbed proteostasis or for cancer therapies targeting protein degradation. Our findings may also have important implications for the field of tissue engineering, as the manufacture of cell-derived biomaterial scaffolds may need to consider proteostasis to effectively replicate native tissues

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Feasibility studies for imaging e+^{+}e−^{-} annihilation with modular multi-strip detectors

    Full text link
    Studies based on imaging the annihilation of the electron (e−^{-}) and its antiparticle positron (e+^{+}) open up several interesting applications in nuclear medicine and fundamental research. The annihilation process involves both the direct conversion of e+^{+}e−^{-} into photons and the formation of their atomically bound state, the positronium atom (Ps), which can be used as a probe for fundamental studies. With the ability to produce large quantities of Ps, manipulate them in long-lived Ps states, and image their annihilations after a free fall or after passing through atomic interferometers, this purely leptonic antimatter system can be used to perform inertial sensing studies in view of a direct test of Einstein equivalence principle. It is envisioned that modular multistrip detectors can be exploited as potential detection units for this kind of studies. In this work, we report the results of the first feasibility study performed on a e+^{+} beamline using two detection modules to evaluate their reconstruction performance and spatial resolution for imaging e+^{+}e−^{-} annihilations and thus their applicability for gravitational studies of Ps

    Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography

    Get PDF
    Charged lepton system symmetry under combined charge, parity, and time-reversal transformation (CPT) remains scarcely tested. Despite stringent quantum-electrodynamic limits, discrepancies in predictions for the electron–positron bound state (positronium atom) motivate further investigation, including fundamental symmetry tests. While CPT noninvariance effects could be manifested in non-vanishing angular correlations between final-state photons and spin of annihilating positronium, measurements were previously limited by knowledge of the latter. Here, we demonstrate tomographic reconstruction techniques applied to three-photon annihilations of ortho-positronium atoms to estimate their spin polarisation without magnetic field or polarised positronium source. We use a plastic-scintillator-based positron-emission-tomography scanner to record ortho-positronium (o-Ps) annihilations with single-event estimation of o-Ps spin and determine the complete spectrum of an angular correlation operator sensitive to CPT-violating effects. We find no violation at the precision level of 10−4, with an over threefold improvement on the previous measurement

    From tests of discrete symmetries to medical imaging with J-PET detector

    Get PDF
    We present results on CPT symmetry tests in decays of positronium performed with the precision at the level of 10−4^{-4}, and positronium images determined with the prototype of the J-PET tomograph. The first full-scale prototype apparatus consists of 192 plastic scintillator strips readout from both ends with vacuum tube photomultipliers. Signals produced by photomultipliers are probed in the amplitude domain and are digitized by FPGA-based readout boards in triggerless mode. In this contribution we report on the first two- and three-photon positronium images and tests of CPT symmetry in positronium decays
    • 

    corecore