457 research outputs found

    Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications

    Full text link
    Business optimization is becoming increasingly important because all business activities aim to maximize the profit and performance of products and services, under limited resources and appropriate constraints. Recent developments in support vector machine and metaheuristics show many advantages of these techniques. In particular, particle swarm optimization is now widely used in solving tough optimization problems. In this paper, we use a combination of a recently developed Accelerated PSO and a nonlinear support vector machine to form a framework for solving business optimization problems. We first apply the proposed APSO-SVM to production optimization, and then use it for income prediction and project scheduling. We also carry out some parametric studies and discuss the advantages of the proposed metaheuristic SVM.Comment: 12 page

    A fundamental limit for integrated atom optics with Bose-Einstein condensates

    Full text link
    The dynamical response of an atomic Bose-Einstein condensate manipulated by an integrated atom optics device such as a microtrap or a microfabricated waveguide is studied. We show that when the miniaturization of the device enforces a sufficiently high condensate density, three-body interactions lead to a spatial modulational instability that results in a fundamental limit on the coherent manipulation of Bose-Einstein condensates.Comment: 6 pages, 3 figure

    Proton Differential Elliptic Flow and the Isospin-Dependence of the Nuclear Equation of State

    Get PDF
    Within an isospin-dependent transport model for nuclear reactions involving neutron-rich nuclei, we study the first-order direct transverse flow of protons and their second-order differential elliptic flow as a function of transverse momentum. It is found that the differential elliptic flow of mid-rapidity protons, especially at high transverse momenta, is much more sensitive to the isospin dependence of the nuclear equation of state than the direct flow. Origins of these different sensitivities and their implications to the experimental determination of the isospin dependence of the nuclear equation of state by using neutron-rich heavy-ion collisions at intermediate energies are discussed.Comment: 15 pages, 6 figures. Phys. Rev. C (2001) in pres

    Massive binary black holes in galactic nuclei and their path to coalescence

    Full text link
    Massive binary black holes form at the centre of galaxies that experience a merger episode. They are expected to coalesce into a larger black hole, following the emission of gravitational waves. Coalescing massive binary black holes are among the loudest sources of gravitational waves in the Universe, and the detection of these events is at the frontier of contemporary astrophysics. Understanding the black hole binary formation path and dynamics in galaxy mergers is therefore mandatory. A key question poses: during a merger, will the black holes descend over time on closer orbits, form a Keplerian binary and coalesce shortly after? Here we review progress on the fate of black holes in both major and minor mergers of galaxies, either gas-free or gas-rich, in smooth and clumpy circum-nuclear discs after a galactic merger, and in circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    Partial Wave Analysis of J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The KKˉK^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width 500\sim 500 MeV. There is further evidence for a 2+2^{-+} component peaking at 2.55 GeV. The non-KKˉK^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from KKˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    State transfer in intrinsic decoherence spin channels

    Full text link
    By analytically solving the master equation, we investigate quantum state transfer, creation and distribution of entanglement in the model of Milburn's intrinsic decoherence. Our results reveal that the ideal spin channels will be destroyed by the intrinsic decoherence environment, and the detrimental effects become severe as the decoherence rate γ\gamma and the spin chain length NN increase. For infinite evolution time, both the state transfer fidelity and the concurrence of the created and distributed entanglement approach steady state values, which are independent of the decoherence rate γ\gamma and decrease as the spin chain length NN increases. Finally, we present two modified spin chains which may serve as near perfect spin channels for long distance state transfer even in the presence of intrinsic decoherence environments F[ρ(t)]\mathcal {F}{[\rho(t)]}.Comment: 11 pages, 11 figure
    corecore