134 research outputs found

    Conversion events in gene clusters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene clusters containing multiple similar genomic regions in close proximity are of great interest for biomedical studies because of their associations with inherited diseases. However, such regions are difficult to analyze due to their structural complexity and their complicated evolutionary histories, reflecting a variety of large-scale mutational events. In particular, conversion events can mislead inferences about the relationships among these regions, as traced by traditional methods such as construction of phylogenetic trees or multi-species alignments.</p> <p>Results</p> <p>To correct the distorted information generated by such methods, we have developed an automated pipeline called CHAP (Cluster History Analysis Package) for detecting conversion events. We used this pipeline to analyze the conversion events that affected two well-studied gene clusters (α-globin and β-globin) and three gene clusters for which comparative sequence data were generated from seven primate species: CCL (chemokine ligand), IFN (interferon), and CYP2abf (part of cytochrome P450 family 2). CHAP is freely available at <url>http://www.bx.psu.edu/miller_lab</url>.</p> <p>Conclusions</p> <p>These studies reveal the value of characterizing conversion events in the context of studying gene clusters in complex genomes.</p

    Clustered Gene Expression Changes Flank Targeted Gene Loci in Knockout Mice

    Get PDF
    Gene expression profiling using microarrays is a powerful technology widely used to study regulatory networks. Profiling of mRNA levels in mutant organisms has the potential to identify genes regulated by the mutated protein.Using tissues from multiple lines of knockout mice we have examined genome-wide changes in gene expression. We report that a significant proportion of changed genes were found near the targeted gene.The apparent clustering of these genes was explained by the presence of flanking DNA from the parental ES cell. We provide recommendations for the analysis and reporting of microarray data from knockout mice

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Primate TNF Promoters Reveal Markers of Phylogeny and Evolution of Innate Immunity

    Get PDF
    Background. Tumor necrosis factor (TNF) is a critical cytokine in the immune response whose transcriptional activation is controlled by a proximal promoter region that is highly conserved in mammals and, in particular, primates. Specific single nucleotide polymorphisms (SNPs) upstream of the proximal human TNF promoter have been identified, which are markers of human ancestry. Methodology/Principal findings. Using a comparative genomics approach we show that certain fixed genetic differences in the TNF promoter serve as markers of primate speciation. We also demonstrate that distinct alleles of most human TNF promoter SNPs are identical to fixed nucleotides in primate TNF promoters. Furthermore, we identify fixed genetic differences within the proximal TNF promoters of Asian apes that do not occur in African ape or human TNF promoters. Strikingly, protein-DNA binding assays and gene reporter assays comparing these Asian ape TNF promoters to African ape and human TNF promoters demonstrate that, unlike the fixed differences that we define that are associated with primate phylogeny, these Asian ape-specific fixed differences impair transcription factor binding at an Sp1 site and decrease TNF transcription induced by bacterial stimulation of macrophages. Conclusions/significance. Here, we have presented the broadest interspecies comparison of a regulatory region of an innate immune response gene to date. We have characterized nucleotide positions in Asian ape TNF promoters that underlie functional changes in cell type- and stimulus-specific activation of the TNF gene. We have also identified ancestral TNF promoter nucleotide states in the primate lineage that correspond to human SNP alleles. These findings may reflect evolution of Asian and African apes under a distinct set of infectious disease pressures involving the innate immune response and TNF

    Chemical characterization of oligosaccharides in the milk of six species of New and Old world monkeys

    Get PDF
    Human and great ape milks contain a diverse array of milk oligosaccharides, but little is known about the milk oligosaccharides of other primates, and how they differ among taxa. Neutral and acidic oligosaccharides were isolated from the milk of three species of Old World or catarrhine monkeys (Cercopithecidae: rhesus macaque (Macaca mulatta), toque macaque (Macaca sinica) and Hamadryas baboon (Papio hamadryas)) and three of New World or platyrrhine monkeys (Cebidae: tufted capuchin (Cebus apella) and Bolivian squirrel monkey (Saimiri boliviensis); Atelidae: mantled howler (Alouatta palliata)). The milks of these species contained 6–8% total sugar, most of which was lactose: the estimated ratio of oligosaccharides to lactose in Old World monkeys (1:4 to 1:6) was greater than in New World monkeys (1:12 to 1:23). The chemical structures of the oligosaccharides were determined mainly by 1H-NMR spectroscopy. Oligosaccharides containing the type II unit (Gal(β1-4)GlcNAc) were found in the milk of the rhesus macaque, toque macaque, Hamadryas baboon and tufted capuchin, but oligosaccharides containing the type I unit (Gal(β1-3)GlcNAc), which have been found in human and many great ape milks, were absent from the milk of all species studied. Oligosaccharides containing Lewis x (Gal(β1-4)[Fuc(α1-3)]GlcNAc) and 3-fucosyl lactose (3-FL, Gal(β1-4)[Fuc(α1-3)]Glc) were found in the milk of the three cercopithecid monkey species, while 2-fucosyl lactose (5'-FL, Fuc(α1-2)Gal(β1-4)Glc) was absent from all species studied. All of these milks contained acidic oligosaccharides that had N-acetylneuraminic acid as part of their structures, but did not contain oligosaccharides that had N-glycolylneuraminic acid, in contrast to the milk or colostrum of great apes which contain both types of acidic oligosaccharides. Two GalNAc-containing oligosaccharides, lactose 3′-O-sulfate and lacto-N-novopentaose I (Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc) were found only in the milk of rhesus macaque, hamadryas baboon and tufted capuchin, respectively. Further research is needed to determine the extent to which the milk oligosaccharide patterns observed among these taxa represent wider phylogenetic trends among primates and how much variation occurs among individuals or species

    The Effects of Handling and Anesthetic Agents on the Stress Response and Carbohydrate Metabolism in Northern Elephant Seals

    Get PDF
    Free-ranging animals often cope with fluctuating environmental conditions such as weather, food availability, predation risk, the requirements of breeding, and the influence of anthropogenic factors. Consequently, researchers are increasingly measuring stress markers, especially glucocorticoids, to understand stress, disturbance, and population health. Studying free-ranging animals, however, comes with numerous difficulties posed by environmental conditions and the particular characteristics of study species. Performing measurements under either physical restraint or chemical sedation may affect the physiological variable under investigation and lead to values that may not reflect the standard functional state of the animal. This study measured the stress response resulting from different handling conditions in northern elephant seals and any ensuing influences on carbohydrate metabolism. Endogenous glucose production (EGP) was measured using [6-3H]glucose and plasma cortisol concentration was measured from blood samples drawn during three-hour measurement intervals. These measurements were conducted in weanlings and yearlings with and without the use of chemical sedatives—under chemical sedation, physical restraint, or unrestrained. We compared these findings with measurements in adult seals sedated in the field. The method of handling had a significant influence on the stress response and carbohydrate metabolism. Physically restrained weanlings and yearlings transported to the lab had increased concentrations of circulating cortisol (F11, 46 = 25.2, p<0.01) and epinephrine (F3, 12 = 5.8, p = 0.01). Physical restraint led to increased EGP (t = 3.1, p = 0.04) and elevated plasma glucose levels (t = 8.2, p<0.01). Animals chemically sedated in the field typically did not exhibit a cortisol stress response. The combination of anesthetic agents (Telazol, ketamine, and diazepam) used in this study appeared to alleviate a cortisol stress response due to handling in the field without altering carbohydrate metabolism. Measures of hormone concentrations and metabolism made under these conditions are more likely to reflect basal values

    Amyloid in the islets of Langerhans: Thoughts and some historical aspects

    Get PDF
    Deposition of amyloid, derived from the polypeptide hormone islet amyloid polypeptide (IAPP; ‘amylin’) is the single most typical islet alteration in type 2 diabetes. Islet amyloid was described as hyalinization already in 1901, but not until 1986 was it understood that it is a polymerization product of a novel β-cell regulatory product. The subject of this focused review deals with the pathogenesis and importance of the islet amyloid itself, not with the biological effect of the polypeptide. Similar to the situation in Alzheimer's disease, it has been argued that the amyloid may not be of importance since there is no strict correlation between the degree of islet amyloid infiltration and the disease. However, it is hardly discussable that the amyloid is important in subjects where islets have been destroyed by pronounced islet amyloid deposits. Even when there is less islet amyloid the deposits are widely spread, and β-cells show ultrastructural signs of cell membrane destruction. It is suggested that type 2 diabetes is heterogeneous and that in one major subtype aggregation of IAPP into amyloid fibrils is determining the progressive loss of β-cells. Interestingly, development of islet amyloid may be an important event in the loss of β-cell function after islet transplantation into type 1 diabetic subjects

    Hystricognathy vs Sciurognathy in the Rodent Jaw: A New Morphometric Assessment of Hystricognathy Applied to the Living Fossil Laonastes (Diatomyidae)

    Get PDF
    While exceptional for an intense diversification of lineages, the evolutionary history of the order Rodentia comprises only a limited number of morphological morphotypes for the mandible. This situation could partly explain the intense debates about the taxonomic position of the latest described member of this clade, the Laotian rock rat Laonastes aenigmamus (Diatomyidae). This discovery has re-launched the debate on the definition of the Hystricognathi suborder identified using the angle of the jaw relative to the plane of the incisors. Our study aims to end this ambiguity. For clarity, it became necessary to revisit the entire morphological diversity of the mandible in extant and extinct rodents. However, current and past rodent diversity brings out the limitations of the qualitative descriptive approach and highlights the need for a quantitative approach. Here, we present the first descriptive comparison of the masticatory apparatus within the Ctenohystrica clade, in combining classic comparative anatomy with morphometrical methods. First, we quantified the shape of the mandible in rodents using 3D landmarks. Then, the analysis of osteological features was compared to myological features in order to understand the biomechanical origin of this morphological diversity. Among the morphological variation observed, the mandible of Laonastes aenigmamus displays an intermediate association of features that could be considered neither as sciurognathous nor as hystricognathous

    Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest.</p> <p>Results</p> <p>We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence <it>in situ </it>hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced.</p> <p>Conclusions</p> <p>We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves the loss of a single hemoglobin gene cluster after the whole genome duplication (WGD) at the base of the teleost radiation but prior to the salmonid-specific WGD, which then produced the duplicated copies seen today. We also propose that the relatively high number of hemoglobin genes as well as the presence of non-Bohr β hemoglobin genes may be due to the dynamic life history of salmon and the diverse environmental conditions that the species encounters.</p> <p>Data deposition: BACs S0155C07 and S0079J05 (fps135): GenBank <ext-link ext-link-id="GQ898924" ext-link-type="gen">GQ898924</ext-link>; BACs S0055H05 and S0014B03 (fps1046): GenBank <ext-link ext-link-id="GQ898925" ext-link-type="gen">GQ898925</ext-link></p

    Mitochondrial Oxidative Stress Causes Hyperphosphorylation of Tau

    Get PDF
    Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and ß-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Aß load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD
    corecore