499 research outputs found

    Bond-length dependence of charge-transfer excitations and stretch phonon modes in perovskite ruthenates: Evidence of strong p – d hybridization effects

    Get PDF
    We reported the optical conductivity spectra of the Ruddlesden-Popper series ruthenates, i.e., Srn+1RunO3n+1 and Can+1RunO3n+1, where n=1, 2, and `. Among various optical transitions, we investigated two Ru-O related modes, i.e., the charge-transfer excitation and the transverse stretching phonon. We found that their frequency shifts are not much affected by a structural dimensionality, but are closely related to the Ru-O bond length. Through the quantitative analysis of the charge-transfer excitation energy, we could demonstrate that the p–d hybridization should play an important role in determining their electronic structure. In addition, we discussed how the electronic excitation could contribute the lattice dynamics in the metallic ruthenate

    TRPM2 channel deficiency prevents delayed cytosolic ZnÂČâș accumulation and CA1 pyramidal neuronal death after transient global ischemia

    No full text
    Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic ZnÂČâș level ([ZnÂČâș]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia-reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [ZnÂČâș]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [ZnÂČâș]c but abolished the cytosolic ZnÂČâș accumulation during reperfusion as well as ROS-elicited increases in the [ZnÂČâș]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [ZnÂČâș]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury

    Signatures of a dissipative phase transition in photon correlation measurements

    Get PDF
    This work was supported by the Swiss National Science Foundation (SNSF) through the National Centre of Competence in Research - Quantum Science and Technology (NCCR QSIT). A.S., C.S., and S.H. acknowledge support by the State of Bavaria and the DFG within the Project Schn1376/3-1.Understanding and characterizing phase transitions in driven-dissipative systems constitutes a new frontier for many-body physics[1-8]. A generic feature of dissipative phase transitions is a vanishing gap in the Liouvillian spectrum [9], which leads to long-lived deviations from the steady state as the system is driven towards the transition. Here, we show that photon correlation measurements can be used to characterize the corresponding critical slowing down of non-equilibrium dynamics. We focus on the extensively studied phenomenon of optical bistability in GaAs cavity polaritons [10,11], which can be described as a first-order dissipative phase transition [12-14]. Increasing the excitation strength towards the bistable range results in an increasing photon-bunching signal along with a decay time that is prolonged by more than nine orders of magnitude as compared with that of single polaritons. In the limit of strong polariton interactions leading to pronounced quantum fluctuations, the mean-field bistability threshold is washed out. Nevertheless, the functional form with which the Liouvillian gap closes as the thermodynamic limit is approached provides a signature of the emerging dissipative phase transition. Our results establish photon correlation measurements as an invaluable tool for studying dynamical properties of dissipative phase transitions without requiring phase-sensitive interferometric measurements.PostprintPeer reviewe

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Breast density and polymorphisms in genes coding for CYP1A2 and COMT: the Multiethnic Cohort

    Get PDF
    BACKGROUND: Mammographic density is a strong predictor of breast cancer risk and is increased by hormone replacement therapy (HRT). Some associations with genetic polymorphisms in enzymes involved in estrogen metabolism have been described. This cross-sectional analysis examined the relation between mammographic density and the CYP1A2*1F and COMT Val(58 )Met polymorphisms among 332 breast cancer cases and 254 controls in the Hawaii component of the Multiethnic Cohort. METHODS: Mammographic density, before diagnosis in cases, was quantified by using a validated computer-assisted method. Blood samples were genotyped by standard PCR/RFLP methods. Adjusted mean percent density was calculated by genotype using mixed models with the unstructured covariance option. RESULTS: A positive association between the C allele in the CYP1A2*1F gene and percent density, but not the dense area, was suggested (p = 0.11). The relation was limited to controls (p = 0.045), postmenopausal women not using HRT (p = 0.08), and normal weight subjects (p = 0.046). We did not observe any relation between the COMT Val(58 )Met polymorphism and breast density. CONCLUSION: The lack of an association between the CYP1A2 genotype and the size of the dense areas suggests an effect on the non-dense, i.e., fatty breast tissue. The discrepancies among studies may be due to differential susceptibility; changes in enzyme activity as a result of the CYP1A2*1F polymorphism may influence breast tissue differently depending on hormonal status. Larger studies with the ability to look at interactions would be useful to elucidate the influence of genetic variation in CYP1A2 and COMT on the risk of developing breast cancer

    Kidins220/ARMS Is a Novel Modulator of Short-Term Synaptic Plasticity in Hippocampal GABAergic Neurons

    Get PDF
    Kidins220 (Kinase D interacting substrate of 220 kDa)/ARMS (Ankyrin Repeat-rich Membrane Spanning) is a scaffold protein highly expressed in the nervous system. Previous work on neurons with altered Kidins220/ARMS expression suggested that this protein plays multiple roles in synaptic function. In this study, we analyzed the effects of Kidins220/ARMS ablation on basal synaptic transmission and on a variety of short-term plasticity paradigms in both excitatory and inhibitory synapses using a recently described Kidins220 full knockout mouse. Hippocampal neuronal cultures prepared from embryonic Kidins220−/− (KO) and wild type (WT) littermates were used for whole-cell patch-clamp recordings of spontaneous and evoked synaptic activity. Whereas glutamatergic AMPA receptor-mediated responses were not significantly affected in KO neurons, specific differences were detected in evoked GABAergic transmission. The recovery from synaptic depression of inhibitory post-synaptic currents in WT cells showed biphasic kinetics, both in response to paired-pulse and long-lasting train stimulation, while in KO cells the respective slow components were strongly reduced. We demonstrate that the slow recovery from synaptic depression in WT cells is caused by a transient reduction of the vesicle release probability, which is absent in KO neurons. These results suggest that Kidins220/ARMS is not essential for basal synaptic transmission and various forms of short-term plasticity, but instead plays a novel role in the mechanisms regulating the recovery of synaptic strength in GABAergic synapses

    Bright light-emitting diodes based on organometal halide perovskite.

    Get PDF
    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.This is the author accepted manuscript and will be under embargo until 3/2/15. The final version is published in Nature Nanotechnology: http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2014.149.html

    Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-

    Get PDF
    We report a measurement of time-integrated CP-violation asymmetries in the resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production flavor of the charm meson is determined by the charge of the accompanying pion. We apply a Dalitz-amplitude analysis for the description of the dynamic decay structure and use two complementary approaches, namely a full Dalitz-plot fit employing the isobar model for the contributing resonances and a model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57 (stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry, consistent with the standard model prediction.Comment: 15 page
    • 

    corecore