86 research outputs found

    Efficacy of a combination therapy targeting CDK4/6 and autophagy in a mouse xenograft model of t(8;21) acute myeloid leukemia

    Get PDF
    One of the most frequent cytogenetic abnormalities in acute myeloid leukemia (AML) is t(8;21). Although patients with t(8;21) AML have a more favorable prognosis than other cytogenetic subgroups, relapse is still common and novel therapeutic approaches are needed. A recent study showed that t(8;21) AML is characterized by CCND2 deregulation and that co-inhibition of CDK4/6 and autophagy induces apoptosis in t(8;21) AML cells. In this study, we examined the in vivo effects of co-inhibiting CDK4/6 and autophagy. We used a mouse model in which t(8;21)-positive Kasumi-1 cells were subcutaneously inoculated into NOD/Shi-scid IL2Rgnull mice. The mice were treated with the autophagy inhibitor chloroquine (CQ), a CDK4/6 inhibitor (either abemaciclib or palbociclib), or a CDK4/6 inhibitor plus CQ. After 20 days of treatment, tumor volume was measured, and immunostaining and transmission electron microscopy observations were performed. There was no change in tumor growth in CQ-treated mice. However, mice treated with a CDK4/6 inhibitor plus CQ had significantly less tumor growth than mice treated with a CDK4/6 inhibitor alone. CDK4/6 inhibitor treatment increased the formation of autophagosomes. The number of single-strand DNA-positive (apoptotic) cells was significantly higher in the tumors of mice treated with a CDK4/6 inhibitor plus CQ than in mice treated with either CQ or a CDK4/6 inhibitor. These results show that CDK4/6 inhibition induces autophagy, and that co-inhibition of CDK4/6 and autophagy induces apoptosis in t(8;21) AML cells in vivo. The results suggest that inhibiting CDK4/6 and autophagy could be a novel and promising therapeutic strategy in t(8;21) AML

    Fusion partner–specific mutation profiles and KRAS mutations as adverse prognostic factors in MLL-rearranged AML

    Get PDF
    怄性éȘšé«„æ€§ç™œèĄ€ç—…ăźäșˆćŸŒă‚’äșˆæžŹă™ă‚‹æ–°èŠăƒžăƒŒă‚«ăƒŒă‚’ç™ș芋 --ăƒȘă‚čă‚Żă«ćżœă˜ăŸé©ćˆ‡ăȘæȻ療に぀ăȘăŒă‚‹ćŻèƒœæ€§--. äșŹéƒœć€§ć­Šăƒ—ăƒŹă‚čăƒȘăƒȘăƒŒă‚č. 2020-10-02.Mixed-lineage leukemia (MLL) gene rearrangements are among the most frequent chromosomal abnormalities in acute myeloid leukemia (AML). MLL fusion patterns are associated with the patient’s prognosis; however, their relationship with driver mutations is unclear. We conducted sequence analyses of 338 genes in pediatric patients with MLL-rearranged (MLL-r) AML (n = 56; JPLSG AML-05 study) alongside data from the TARGET study’s pediatric cohorts with MLL-r AML (n = 104), non–MLL-r AML (n = 581), and adult MLL-r AML (n = 81). KRAS mutations were most frequent in pediatric patients with high-risk MLL fusions (MLL-MLLLT10, MLL-MLLT4, and MLL-MLLT1). Pediatric patients with MLL-r AML (n = 160) and a KRAS mutation (KRAS-MT) had a significantly worse prognosis than those without a KRAS mutation (KRAS-WT) (5-year event-free survival [EFS]: 51.8% vs 18.3%, P < .0001; 5-year overall survival [OS]: 67.3% vs 44.3%, P = .003). The adverse prognostic impact of KRAS mutations was confirmed in adult MLL-r AML. KRAS mutations were associated with adverse prognoses in pediatric patients with both high-risk (MLLT10+MLLT4+MLLT1; n = 60) and intermediate-to-low–risk (MLLT3+ELL+others; n = 100) MLL fusions. The prognosis did not differ significantly between patients with non–MLL-r AML with KRAS-WT or KRAS-MT. Multivariate analysis showed the presence of a KRAS mutation to be an independent prognostic factor for EFS (hazard ratio [HR], 2.21; 95% confidence interval [CI], 1.35-3.59; P = .002) and OS (HR, 1.85; 95% CI, 1.01-3.31; P = .045) in MLL-r AML. The mutation is a distinct adverse prognostic factor in MLL-r AML, regardless of risk subgroup, and is potentially useful for accurate treatment stratification. This trial was registered at the UMIN (University Hospital Medical Information Network) Clinical Trials Registry (UMIN-CTR; http://www.umin.ac.jp/ctr/index.htm) as #UMIN000000511

    Diagnosis of acute myeloid leukemia according to the WHO classification in the Japan Adult Leukemia Study Group AML-97 protocol

    Get PDF
    We reviewed and categorized 638 of 809 patients who were registered in the Japan Adult Leukemia Study Group acute myeloid leukemia (AML)-97 protocol using morphological means. Patients with the M3 subtype were excluded from the study group. According to the WHO classification, 171 patients (26.8%) had AML with recurrent genetic abnormalities, 133 (20.8%) had AML with multilineage dysplasia (MLD), 331 (51.9%) had AML not otherwise categorized, and 3 (0.5%) had acute leukemia of ambiguous lineage. The platelet count was higher and the rate of myeloperoxidase (MPO)-positive blasts was lower in AML with MLD than in the other WHO categories. The outcome was significantly better in patients with high (≄50%) than with low (<50%) ratios of MPO-positive blasts (P < 0.01). The 5-year survival rates for patients with favorable, intermediate, and adverse karyotypes were 63.4, 39.1, and 0.0%, respectively, and 35.5% for those with 11q23 abnormalities (P < 0.0001). Overall survival (OS) did not significantly differ between nine patients with t(9;11) and 23 with other 11q23 abnormalities (P = 0.22). Our results confirmed that the cytogenetic profile, MLD phenotype, and MPO-positivity of blasts are associated with survival in patients with AML, and showed that each category had the characteristics of the WHO classification such as incidence, clinical features, and OS

    Transition from Positive to Neutral in Mutation Fixation along with Continuing Rising Fitness in Thermal Adaptive Evolution

    Get PDF
    It remains to be determined experimentally whether increasing fitness is related to positive selection, while stationary fitness is related to neutral evolution. Long-term laboratory evolution in Escherichia coli was performed under conditions of thermal stress under defined laboratory conditions. The complete cell growth data showed common continuous fitness recovery to every 2°C or 4°C stepwise temperature upshift, finally resulting in an evolved E. coli strain with an improved upper temperature limit as high as 45.9°C after 523 days of serial transfer, equivalent to 7,560 generations, in minimal medium. Two-phase fitness dynamics, a rapid growth recovery phase followed by a gradual increasing growth phase, was clearly observed at diverse temperatures throughout the entire evolutionary process. Whole-genome sequence analysis revealed the transition from positive to neutral in mutation fixation, accompanied with a considerable escalation of spontaneous substitution rate in the late fitness recovery phase. It suggested that continually increasing fitness not always resulted in the reduction of genetic diversity due to the sequential takeovers by fit mutants, but caused the accumulation of a considerable number of mutations that facilitated the neutral evolution

    Competition for Mitogens Regulates Spermatogenic Stem Cell Homeostasis in an Open Niche

    Get PDF
    In many tissues, homeostasis is maintained by physical contact between stem cells and an anatomically defined niche. However, how stem cell homeostasis is achieved in environments where cells are motile and dispersed among their progeny remains unknown. Using murine spermatogenesis as a model, we find that spermatogenic stem cell density is tightly regulated by the supply of fibroblast growth factors (FGFs) from lymphatic endothelial cells. We propose that stem cell homeostasis is achieved through competition for a limited supply of FGFs. We show that the quantitative dependence of stem cell density on FGF dosage, the biased localization of stem cells toward FGF sources, and stem cell dynamics during regeneration following injury can all be predicted and explained within the framework of a minimal theoretical model based on “mitogen competition.” We propose that this model provides a generic and robust mechanism to support stem cell homeostasis in open, or facultative, niche environments

    The impact of inflammation on bone mass in children

    Get PDF
    Bone is a dynamic tissue. Skeletal bone integrity is maintained through bone modeling and remodeling. The mechanisms underlying this bone mass regulation are complex and interrelated. An imbalance in the regulation of bone remodeling through bone resorption and bone formation results in bone loss. Chronic inflammation influences bone mass regulation. Inflammation-related bone disorders share many common mechanisms of bone loss. These mechanisms are ultimately mediated through the uncoupling of bone remodeling. Cachexia, physical inactivity, pro-inflammatory cytokines, as well as iatrogenic factors related to effects of immunosuppression are some of the common mechanisms. Recently, cytokine signaling through the central nervous system has been investigated for its potential role in bone mass dysregulation in inflammatory conditions. Growing research on the molecular mechanisms involved in inflammation-induced bone loss may lead to more selective therapeutic targeting of these pathological signaling pathways

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/
    • 

    corecore