90 research outputs found

    Environmental distribution and seasonal dynamics of Marteilia refringens and Bonamia ostreae, two protozoan parasites of the European flat oyster, Ostrea edulis

    Get PDF
    IntroductionMarteilia refringens and Bonamia ostreae are protozoan parasites responsible for mortalities of farmed and wild flat oysters Ostrea edulis in Europe since 1968 and 1979, respectively. Despite almost 40 years of research, the life-cycle of these parasites is still poorly known, especially regarding their environmental distribution.MethodsWe carried out an integrated field study to investigate the dynamics of M. refringens and B. ostreae in Rade of Brest, where both parasites are known to be present. We used real-time PCR to monitor seasonally over four years the presence of both parasites in flat oysters. In addition, we used previously developed eDNA based-approaches to detect parasites in planktonic and benthic compartments for the last two years of the survey.ResultsM. refringens was detected in flat oysters over the whole sampling period, sometimes with a prevalence exceeding 90%. It was also detected in all the sampled environmental compartments, suggesting their involvement in parasite transmission and overwintering. In contrast, B. ostreae prevalence in flat oysters was low and the parasite was almost never detected in planktonic and benthic compartments. Finally, the analysis of environmental data allowed describing the seasonal dynamics of both parasites in Rade of Brest: M. refringens was more detected in summer and fall than in winter and spring, contrary to B. ostreae which showed higher prevalence in winter and spring.DiscussionThe present study emphasizes the difference between M. refringens and B. ostreae ecology, the former presenting a wider environmental distribution than the latter, which seems closely associated to flat oysters. Our findings highlight the key role of planktonic and benthic compartments in M. refringens transmission and storage or potential overwintering, respectively. More generally, we provide here a method that could be useful not only to further investigate non cultivable pathogens life-cycle, but also to support the design of more integrated surveillance programs

    Εισοδηματικές ανισότητες και φιλανθρωπία

    Get PDF
    <p>All variables were kriged on different variogram models depending on the data (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0044155#pone-0044155-t001" target="_blank">Table 1</a>). Geometrical scales were used to maximize the visualization of both gradients and the patchiness of the different variables. Mollusk maps are at different scales to account for the discrepancy in the data between the 2 samplings. <b>A, B</b>: Chl <i>a</i> concentration (µg.L<sup>−1</sup>); <b>C, D</b>: SPiM amount (mg.L<sup>−1</sup>). <b>E, F</b>: Bottom mean current velocities and direction at the 2 sampling periods, calculated by the MARS-3D hydrodynamic model.</p

    Multi-messenger astronomy with INTEGRAL

    Full text link
    At the time of defining the science objectives of the INTernational Gamma-Ray Astrophysics Laboratory (INTEGRAL), such a rapid and spectacular development of multi-messenger astronomy could not have been predicted, with new impulsive phenomena becoming accessible through different channels. Neutrino telescopes have routinely detected energetic neutrino events coming from unknown cosmic sources since 2013. Gravitational wave detectors opened a novel window on the sky in 2015 with the detection of the merging of two black holes and in 2017 with the merging of two neutron stars, followed by signals in the full electromagnetic range. Finally, since 2007, radio telescopes detected extremely intense and short burst of radio waves, known as Fast Radio Bursts (FRBs) whose origin is for most cases extragalactic, but enigmatic. The exceptionally robust and versatile design of the INTEGRAL mission has allowed researchers to exploit data collected not only with the pointed instruments, but also with the active cosmic-ray shields of the main instruments to detect impulses of gamma-rays in coincidence with unpredictable phenomena. The full-sky coverage, mostly unocculted by the Earth, the large effective area, the stable background, and the high duty cycle (85%) put INTEGRAL in a privileged position to give a major contribution to multi-messenger astronomy. In this review, we describe how INTEGRAL has provided upper limits on the gamma-ray emission from black-hole binary mergers, detected a short gamma-ray burst in coincidence with a binary neutron star merger, contributed to define the spectral energy distribution of a blazar associated with a neutrino event, set upper limits on impulsive and steady gamma-ray emission from cosmological FRBs, and detected a magnetar flare associated with fast radio bursting emission.Comment: Accepted for publication on New Astronomy Reviews as invited contributio

    The characterization of the distant blazar GB6 J1239+0443 from flaring and low activity periods

    Get PDF
    In 2008 AGILE and Fermi detected gamma-ray flaring activity from the unidentified EGRET source 3EG J1236+0457, recently associated with a flat spectrum radio quasar GB6 J1239+0443 at z=1.762. The optical counterpart of the gamma-ray source underwent a flux enhancement of a factor 15-30 in 6 years, and of ~10 in six months. We interpret this flare-up in terms of a transition from an accretion-disk dominated emission to a synchrotron-jet dominated one. We analysed a Sloan Digital Sky Survey (SDSS) archival optical spectrum taken during a period of low radio and optical activity of the source. We estimated the mass of the central black hole using the width of the CIV emission line. In our work, we have also investigated SDSS archival optical photometric data and UV GALEX observations to estimate the thermal-disk emission contribution of GB6 J1239+0443. Our analysis of the gamma-ray data taken during the flaring episodes indicates a flat gamma-ray spectrum, with an extension of up to 15 GeV, with no statistically-relevant sign of absorption from the broad line region, suggesting that the blazar-zone is located beyond the broad line region. This result is confirmed by the modeling of the broad-band spectral energy distribution (well constrained by the available multiwavelength data) of the flaring activity periods and by the accretion disk luminosity and black hole mass estimated by us using archival data.Comment: 30 pages, 7 figures, 4 tables MNRAS Accepted on 2012 June 1

    GRB 070707: the first short gamma-ray burst observed by INTEGRAL

    Full text link
    INTEGRAL has observed 47 long-duration GRBs (T_90 > 2s) and 1 short-duration GRB (T_90 < 2s) in five years of observation since October 2002. This work presents the properties of the prompt emission of GRB 070707, which is the first short hard GRB observed by INTEGRAL. The spectral and temporal properties of GRB 070707 were determined using the two sensitive coded-mask gamma-ray instruments on board INTEGRAL, IBIS and SPI. The T_90 duration was 0.8s, and the spectrum of the prompt emission was obtained by joint deconvolution of IBIS and SPI data to yield a best fit power-law with photon index alpha = -1.19 +0.14 -0.13, which is consistent with the characteristics of short-hard gamma-ray bursts. The peak flux over 1 second was 1.79 photons/cm^2/s and the fluence over the same interval was 2.07 x 10^-7 erg/cm^2 in the energy range 20-200keV. The spectral lag measured between 25-50keV and 100-300keV is 20 +/- 5ms, consistent with the small or negligible lags measured for short bursts. The spectral and temporal properties of GRB 070707 are comparable to those of the short hard bursts detected by other gamma-ray satellites, including BATSE and Swift. We estimate a lower limit on the Lorentz factor Gamma >~ 25 for GRB 070707, assuming the typical redshift for short GRBs of z=0.35. This limit is consistent with previous estimates for short GRBs and is smaller than the lower limits of Gamma >~ 100 calculated for long GRBs. If GRB 070707 is a member of the recently postulated class of short GRBs at z ~ 1, the lower limit on Gamma increases to Gamma >~ 35.Comment: 7 pages, 3 figures, accepted for publication in A&
    corecore