324 research outputs found

    Associations between early infections and childhood cognition in the Newcastle Thousand Families Study birth cohort

    Get PDF
    Childhood infections have been shown to stunt growth, contribute to malnutrition and reduce cognition in early adulthood. This study aimed to assess relationships between early life infections and childhood cognition at age 11 years in the Newcastle Thousand Families Study (NTFS). The analysis included 741 members from the NTFS who had complete data for infections between birth and 5 years, and the 11-plus examinations. School records from the 11-plus examinations showed cognitive (IQ), English (EQ) and arithmetic (AQ) abilities. Housing conditions, overcrowding, birth order and social class were recorded at birth. Helicobacter pylori seropositivity was measured at age 49–51 years. Multivariable linear regression was used to examine relationships between infections and cognition. The total number of infections in the first 5 years of life was not significantly associated with IQ, EQ or AQ, nor were there significant relationships between cognitive outcomes and most infections. Tonsillitis did display a positive, significant association with IQ after adjustment for confounders (b = 6.43, 95% CI 0.92, 11.94, p = 0.022). Lower respiratory tract infections (LRTIs) showed significant negative relationships with all cognitive outcomes. H. pylori seropositivity at age 50 exhibited negative, significant relationships with EQ (p = 0.014) and AQ (p = 0.024) after adjustment for confounders. Although no significant relationship between overall infections and cognition were found, there were indications that LRTIs and gastrointestinal system infections may limit cognitive development. Given these infections remain prevalent, further research regarding severity and recurrence of infections and how they affect childhood cognition is needed. 10.1017/S204017442300033

    Metabolically diverse primordial microbial communities in Earth’s oldest seafloor-hydrothermal jasper

    Get PDF
    The oldest putative fossils occur as hematite filaments and tubes in jasper-carbonate banded iron formations from the 4280- to 3750-Ma Nuvvuagittuq Supracrustal Belt, Québec. If biological in origin, these filaments might have affinities with modern descendants; however, if abiotic, they could indicate complex prebiotic forms on early Earth. Here, we report images of centimeter-size, autochthonous hematite filaments that are pectinate-branching, parallel-aligned, undulated, and containing Fe2+-oxides. These microstructures are considered microfossils because of their mineral associations and resemblance to younger microfossils, modern Fe-bacteria from hydrothermal environments, and the experimental products of heated Fe-oxidizing bacteria. Additional clusters of irregular hematite ellipsoids could reflect abiotic processes of silicification, producing similar structures and thus yielding an uncertain origin. Millimeter-sized chalcopyrite grains within the jasper-carbonate rocks have 34S- and 33S-enrichments consistent with microbial S-disproportionation and an O2-poor atmosphere. Collectively, the observations suggest a diverse microbial ecosystem on the primordial Earth that may be common on other planetary bodies, including Mars

    Lafora disease E3-ubiquitin ligase malin is related to TRIM32 at both the phylogenetic and functional level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin.</p> <p>Results</p> <p>After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming a functional complex, laforin and perhaps malin may also have independent functions. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32, which belongs to the tripartite-motif containing family of proteins. We present experimental evidence that both malin and TRIM32 share some substrates for ubiquitination, although they produce ubiquitin chains with different topologies. However, TRIM32-specific substrates were not reciprocally ubiquitinated by the laforin-malin complex.</p> <p>Conclusions</p> <p>We found that malin and laforin are not conserved in the same genomes. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32. The latter result suggests a common origin for malin and TRIM32 and provides insights into possible functional relationships between both proteins.</p

    The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information

    Get PDF
    BACKGROUND: Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage. RESULTS: We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0–8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis. CONCLUSION: Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues by this method in various animals would be a powerful tool to examine the phylotypic stage hypothesis, and to understand which kinds of developmental events and gene sets are evolutionarily constrained and how they limit the possible variations of animal basic body plans

    Synthesis and Thermoelectric Properties of Bi2Se3 Nanostructures

    Get PDF
    Bismuth selenide (Bi2Se3) nanostructures were synthesized via solvothermal method. The crystallinity of the as-synthesized sample has been analyzed by X-ray diffraction, which shows the formation of rhombohedral Bi2Se3. Electron microscopy examination indicates that the Bi2Se3 nanoparticles have hexagonal flake-like shape. The effect of the synthesis temperature on the morphology of the Bi2Se3 nanostructures has also been investigated. It is found that the particle size increases with the synthesis temperature. Thermoelectric properties of the Bi2Se3 nanostructures were also measured, and the maximum value of dimensionless figure of merit (ZT) of 0.096 was obtained at 523 K

    Surveillance study of apparent life-threatening events (ALTE) in the Netherlands

    Get PDF
    SIDS and ALTE are different entities that somehow show some similarities. Both constitute heterogeneous conditions. The Netherlands is a low-incidence country for SIDS. To study whether the same would hold for ALTE, we studied the incidence, etiology, and current treatment of ALTE in The Netherlands. Using the Dutch Pediatric Surveillance Unit, pediatricians working in second- and third-level hospitals in the Netherlands were asked to report any case of ALTE presented in their hospital from January 2002 to January 2003. A questionnaire was subsequently sent to collect personal data, data on pregnancy and birth, condition preceding the incident, the incident itself, condition after the incident, investigations performed, monitoring or treatment initiated during admission, any diagnosis made at discharge, and treatment or parental support offered after discharge. A total of 115 cases of ALTE were reported, of which 110 questionnaires were filled in and returned (response rate 97%). Based on the national birth rate of 200,000, the incidence of ALTE amounted 0.58/1,000 live born infants. No deaths occurred. Clinical diagnoses could be assessed in 58.2%. Most frequent diagnoses were (percentages of the total of 110 cases) gastro-esophageal reflux and respiratory tract infection (37.3% and 8.2%, respectively); main symptoms were change of color and muscle tone, choking, and gagging. The differences in diagnoses are heterogeneous. In 34%, parents shook their infants, which is alarmingly high. Pre- and postmature infants were overrepresented in this survey (29.5% and 8.2%, respectively). Ten percent had recurrent ALTE. In total, 15.5% of the infants were discharged with a home monitor. In conclusion, ALTE has a low incidence in second- and third-level hospitals in the Netherlands. Parents should be systematically informed about the possible devastating effects of shaking an infant. Careful history taking and targeted additional investigations are of utmost importance

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis

    Get PDF
    One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates
    corecore