11 research outputs found

    A modern guide to quantitative spectroscopy of massive OB stars

    Full text link
    Quantitative spectroscopy is a powerful technique from which we can extract information about the physical properties and surface chemical composition of stars. In this chapter, I guide the reader through the main ideas required to get initiated in the learning process to become an expert in the application of state-of-the-art quantitative spectroscopic techniques to the study of massive OB stars. NB: This chapter is intended to serve to young students as a first approach to a field which has attracted my attention during the last 20 years. I should note that, despite its importance, at present, the number of real experts in the field around the world is limited to less than 50 people, and about one third of them are close to retirement. Hence, I consider that this is a good moment to write a summary text on the subject to serve as guideline for the next generations of students interested in joining the massive star crew. If you are one of them, please, use this chapter as a first working notebook. Do not stop here. Dig also, for further details, into the literature I quote along the text. And, once there, dig even deeper to find all the original sources explaining in more detail the physical and technical concepts that are presently incorporated into our modern (almost) automatized tools.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    Early galaxy formation and its large-scale effects

    Get PDF
    Galaxy formation is at the heart of our understanding of cosmic evolution. Although there is a consensus that galaxies emerged from the expanding matter background by gravitational instability of primordial fluctuations, a number of additional physical processes must be understood and implemented in theoretical models before these can be reliably used to interpret observations. In parallel, the astonishing recent progresses made in detecting galaxies that formed only a few hundreds of million years after the Big Bang is pushing the quest for more sophisticated and detailed studies of early structures. In this review, we combine the information gleaned from different theoretical models/studies to build a coherent picture of the Universe in its early stages which includes the physics of galaxy formation along with the impact that early structures had on large-scale processes as cosmic reionization and metal enrichment of the intergalactic medium

    Evidence of human occupation in Mexico around the Last Glacial Maximum.

    Get PDF
    The initial colonization of the Americas remains a highly debated topic1, and the exact timing of the first arrivals is unknown. The earliest archaeological record of Mexico-which holds a key geographical position in the Americas-is poorly known and understudied. Historically, the region has remained on the periphery of research focused on the first American populations2. However, recent investigations provide reliable evidence of a human presence in the northwest region of Mexico3,4, the Chiapas Highlands5, Central Mexico6 and the Caribbean coast7-9 during the Late Pleistocene and Early Holocene epochs. Here we present results of recent excavations at Chiquihuite Cave-a high-altitude site in central-northern Mexico-that corroborate previous findings in the Americas10-17of cultural evidence that dates to the Last Glacial Maximum (26,500-19,000 years ago)18, and which push back dates for human dispersal to the region possibly as early as 33,000-31,000 years ago. The site yielded about 1,900 stone artefacts within a 3-m-deep stratified sequence, revealing a previously unknown lithic industry that underwent only minor changes over millennia. More than 50 radiocarbon and luminescence dates provide chronological control, and genetic, palaeoenvironmental and chemical data document the changing environments in which the occupants lived. Our results provide new evidence for the antiquity of humans in the Americas, illustrate the cultural diversity of the earliest dispersal groups (which predate those of the Clovis culture) and open new directions of research

    25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for Optimized Nanostructures & Nanodevices

    No full text
    corecore