737 research outputs found

    The two-point correlation function of randomly distributed Lyman alpha clouds

    Get PDF
    It is often assumed that Ly-alpha forest clouds are randomly distributed, intergalactic objects that are highly ionized by the UV background produced by quasars. If these assumptions are true, fluctuations in the UV background should produce a nonzero two point correlation function in the Ly-alpha forest. This effect, which is really just a generalization of the proximity effect, is more significant at high redshift (z is approximately 3-4) because the mean free path for UV photons is smaller there, and the fluctuations correspondingly larger. This effect was studied using both the semi-analytic techniques of Zuo's recent papers and Monte Carlo simulations. The correlation function is expected to have a small yet potentially measurable amplitude that is consistent with current upper limits. Furthermore, the signature of this effect is distinctive because the nonzero correlation function extends over the photon mean free path, which is larger than the expected scale of large-scale structure. Observations or upper limits on this effect could provide information about the source of the ionizing background at high redshifts and the nature of the Ly-alpha forest clouds

    On the Evolutionary History of Stars and their Fossil Mass and Light

    Get PDF
    The total extragalactic background radiation can be an important test of the global star formation history (SFH). Using direct observational estimates of the SFH, along with standard assumptions about the initial mass function (IMF), we calculate the total extragalactic background radiation and the observed stellar density today. We show that plausible SFHs allow a significant range in each quantity, but that their ratio is very tightly constrained. Current estimates of the stellar mass and extragalactic background are difficult to reconcile, as long as the IMF is fixed to the Salpeter slope above 1 Msun. The joint confidence interval of these two quantities only agrees with that determined from the allowed range of SFH fits at the 3-sigma level, and for our best-fit values the discrepancy is about a factor of two. Alternative energy sources that contribute to the background, such as active galactic nuclei (AGN), Population III stars, or decaying particles, appear unlikely to resolve the discrepancy. However, changes to the IMF allow plausible solutions to the background problem. The simplest is an average IMF with an increased contribution from stars around 1.5--4 Msun. A ``paunchy'' IMF of this sort could emerge as a global average if low mass star formation is suppressed in galaxies experiencing rapid starbursts. Such an IMF is consistent with observations of star-forming regions, and would help to reconcile the fossil record of star formation with the directly observed SFH.Comment: 21 pages, 7 figures, 3 tables; submitted to Monthly Notice

    Sub-mm Galaxies in Cosmological Simulations

    Get PDF
    We study the predicted sub-mm emission from massive galaxies in a Lambda-CDM universe, using hydrodynamic cosmological simulations. Assuming that most of the emission from newly formed stars is absorbed and reradiated in the rest-frame far-IR, we calculate the number of galaxies that would be detected in sub-mm surveys conducted with SCUBA. The predicted number counts are strongly dependent on the assumed dust temperature and emissivity law. With plausible choices for SED parameters (e.g., T=35 K, beta=1.0), the simulation predictions reproduce the observed number counts above ~ 1 mJy. The sources have a broad redshift distribution with median z ~ 2, in reasonable agreement with observational constraints. However, the predicted count distribution may be too steep at the faint end, and the fraction of low redshift objects may be larger than observed. In this physical model of the sub-mm galaxy population, the objects detected in existing surveys consist mainly of massive galaxies (several M_*) forming stars fairly steadily over timescales ~ 10^8-10^9 years, at moderate rates ~100 Msun/yr. The typical descendants of these sub-mm sources are even more massive galaxies, with old stellar populations, found primarily in dense environments. While the resolution of our simulations is not sufficient to determine galaxy morphologies, these properties support the proposed identification of sub-mm sources with massive ellipticals in the process of formation. The most robust and distinctive prediction of this model, stemming directly from the long timescale and correspondingly moderate rate of star formation, is that the far-IR SEDs of SCUBA sources have a relative high 850 micron luminosity for a given bolometric luminosity. [Abridged]Comment: Submitted to ApJ. 34 pages including 8 PS figure

    Galactic outflows and the kinematics of damped Lyman alpha absorbers

    Get PDF
    The kinematics of damped Lyman alpha absorbers (DLAs) are difficult to reproduce in hierarchical galaxy formation models, particularly the preponderance of wide systems. We investigate DLA kinematics at z=3 using high-resolution cosmological hydrodynamical simulations that include a heuristic model for galactic outflows. Without outflows, our simulations fail to yield enough wide DLAs, as in previous studies. With outflows, predicted DLA kinematics are in much better agreement with observations. Comparing two outflow models, we find that a model based on momentum-driven wind scalings provides the best match to the observed DLA kinematic statistics of Prochaska & Wolfe. In this model, DLAs typically arise a few kpc away from galaxies that would be identified in emission. Narrow DLAs can arise from any halo and galaxy mass, but wide ones only arise in halos with mass >10^11 Mo, from either large central or small satellite galaxies. This implies that the success of this outflow model originates from being most efficient at pushing gas out from small satellite galaxies living in larger halos. This increases the cross-section for large halos relative to smaller ones, thereby yielding wider kinematics. Our simulations do not include radiative transfer effects or detailed metal tracking, and outflows are modeled heuristically, but they strongly suggest that galactic outflows are central to understanding DLA kinematics. An interesting consequence is that DLA kinematics may place constraints on the nature and efficiency of gas ejection from high-z galaxies.Comment: submitted to MNRA

    Facilitating Extended Reality in Museums through a Web-Based Application

    Get PDF
    Masteroppgave i Programvareutvikling samarbeid med HVLPROG399MAMN-PRO

    Parametrising Star Formation Histories

    Full text link
    We examine the star formation histories (SFHs) of galaxies in smoothed particle hydrodynamics (SPH) simulations, compare them to parametric models that are commonly used in fitting observed galaxy spectral energy distributions, and examine the efficacy of these parametric models as practical tools for recovering the physical parameters of galaxies. The commonly used tau-model, with SFR ~ exp(-t/tau), provides a poor match to the SFH of our SPH galaxies, with a mismatch between early and late star formation that leads to systematic errors in predicting colours and stellar mass-to-light ratios. A one-parameter lin-exp model, with SFR ~ t*exp(-t/tau), is much more successful on average, but it fails to match the late-time behavior of the bluest, most actively star-forming galaxies and the passive, "red and dead" galaxies. We introduce a 4-parameter model, which transitions from lin-exp to a linear ramp after a transition time, which describes our simulated galaxies very well. We test the ability of these parametrised models to recover (at z=0, 0.5, and 1) the stellar mass-to-light ratios, specific star formation rates, and stellar population ages from the galaxy colours, computed from the full SPH star formation histories using the FSPS code of Conroy et al. (2009). Fits with tau-models systematically overestimate M/L by ~ 0.2 dex, overestimate population ages by ~ 1-2 Gyr, and underestimate sSFR by ~ 0.05 dex. Fits with lin-exp are less biased on average, but the 4-parameter model yields the best results for the full range of galaxies. Marginalizing over the free parameters of the 4-parameter model leads to slightly larger statistical errors than 1-parameter fits but essentially removes all systematic biases, so this is our recommended procedure for fitting real galaxies.Comment: 28 pages, 18 figure

    The Implications of Gunn-Peterson Troughs in the HeII Lyman-alpha Forest

    Full text link
    Many experts believe that the z ~ 3 HeII Ly-alpha forest will suffer from the same saturation issues as the z ~ 6 HI Ly-alpha forest and, therefore, will not be a sensitive probe of HeII reionization. However, there are several factors that make HeII Ly-alpha absorption more sensitive than HI Ly-alpha. We show that observations of HeII Ly-alpha and Ly-beta Gunn-Peterson troughs can provide a relatively model-independent constraint on the volume-averaged HeII fraction of x_HeII >~ 0.1. This bound derives from first using the most underdense regions in the HeII forest to constrain the local HeII fraction and, then, assuming photoionization equilibrium with the maximum allowed photoionization rate to calculate the ionization state of nearby gas. It is possible to evade this constraint by a factor of ~2, but only if the HeII were reionized recently. We argue that HeII Ly-alpha Gunn-Peterson troughs observed in the spectra of Q0302-003 and HE2347-4342 signify the presence of >~ 10 comoving Mpc patches in which x_HeII > 0.03. This is a factor of 20 improvement over previous constraints from these spectra and 100 times stronger than the tightest constraint on the HI volume-filling fraction from the z>6 HI Lyman forest.Comment: 5 pages, 4 figures, includes some supplementary text not in ApJ Letter versio
    • …
    corecore