792 research outputs found

    Evidence for Black Hole Growth in Local Analogs to Lyman Break Galaxies

    Full text link
    We have used XMM-Newton to observe six Lyman Break Analogs (LBAs): members of the rare population of local galaxies that have properties that are very similar to distant Lyman Break Galaxies. Our six targets were specifically selected because they have optical emission-line properties that are intermediate between starbursts and Type 2 (obscured) AGN. Our new X-ray data provide an important diagnostic of the presence of an AGN. We find X-ray luminosities of order 10^{42} erg/s and ratios of X-ray to far-IR luminosities that are higher than values in pure starburst galaxies by factors ranging from ~ 3 to 30. This strongly suggests the presence of an AGN in at least some of the galaxies. The ratios of the luminosities of the hard (2-10 keV) X-ray to [O III]\lambda 5007 emission-line are low by about an order-of-magnitude compared to Type 1 AGN, but are consistent with the broad range seen in Type 2 AGN. Either the AGN hard X-rays are significantly obscured or the [O III] emission is dominated by the starburst. We searched for an iron emission line at ~ 6.4 keV, which is a key feature of obscured AGN, but only detected emission at the ~ 2\sigma level. Finally, we find that the ratios of the mid-infrared (24\mu m) continuum to [O III]\lambda 5007 luminosities in these LBAs are higher than the values for Type 2 AGN by an average of 0.8 dex. Combining all these clues, we conclude that an AGN is likely to be present, but that the bolometric luminosity is produced primarily by an intense starburst. If these black holes are radiating at the Eddington limit, their masses would lie in the range of 10^5 to 10^6 M_{sun}. These objects may offer ideal local laboratories to investigate the processes by which black holes grew in the early universe.Comment: Accepted for publication in Ap

    Ancient Light from Young Cosmic Cities: Physical and Observational Signatures of Galaxy Proto-Clusters

    Full text link
    For a complete picture of galaxy cluster formation, it is important that we start probing the early epoch of z~2-7 during which clusters and their galaxies first began to form. Because the study of these so-called "proto-clusters" is currently limited by small number statistics, widely varying selection techniques and assumptions, we have performed a systematic study of cluster formation utilizing cosmological simulations. We use the Millennium Simulations to track the evolution of dark matter and galaxies in ~3,000 clusters from the earliest times to z=0. We define an effective radius R_e for proto-clusters and characterize their growth in size and mass. We show that the progenitor regions of galaxy clusters (M>10^14 M_sun/h) can already be identified at least up to z~5, provided that the galaxy overdensities, delta_gal, are measured on a sufficiently large scale (R_e~5-10 cMpc). We present the overdensities in matter, DM halos, and galaxies as functions of present-day cluster mass, redshift, bias, and window size that can be used to interpret the structures found in real surveys. We derive the probability that a structure having a delta_gal, defined by a set of observational selection criteria, is indeed a proto-cluster, and show how their z=0 masses can already be estimated long before virialization. Galaxy overdensity profiles as a function of radius are presented. We further show how their projected surface overdensities decrease as the uncertainties in redshift measurements increase. We provide a table of proto-cluster candidates selected from the literature, and discuss their properties in the light of our simulations predictions. This work provides the general framework that will allow us to extend the study of cluster formation out to much higher redshifts using the large number of proto-clusters that are expected to be discovered in, e.g., the upcoming HETDEX and HSC surveys.Comment: 16 pages, 13 figures, 5 tables; Published in Ap

    Discovery of a large number of candidate proto-clusters traced by ~15 Mpc-scale galaxy overdensities in COSMOS

    Full text link
    To demonstrate the feasibility of studying the epoch of massive galaxy cluster formation in a more systematic manner using current and future galaxy surveys, we report the discovery of a large sample of proto-cluster candidates in the 1.62 deg^2 COSMOS/UltraVISTA field traced by optical/IR selected galaxies using photometric redshifts. By comparing properly smoothed 3D galaxy density maps of the observations and a set of matched simulations incorporating the dominant observational effects (galaxy selection and photometric redshift uncertainties), we first confirm that the observed ~15 comoving Mpc scale galaxy clustering is consistent with LCDM models. Using further the relation between high-z overdensity and the present day cluster mass calibrated in these matched simulations, we found 36 candidate structures at 1.6<z<3.1, showing overdensities consistent with the progenitors of M_z=0 ~10^15 M_sun clusters. Taking into account the significant upward scattering of lower mass structures, the probabilities for the candidates to have at least M_z=0 ~10^14 M_sun are ~70%. For each structure, about 15%-40% of photometric galaxy candidates are expected to be true proto-cluster members that will merge into a cluster-scale halo by z=0. With solely photometric redshifts, we successfully rediscover two spectroscopically confirmed structures in this field, suggesting that our algorithm is robust. This work generates a large sample of uniformly-selected proto-cluster candidates, providing rich targets for spectroscopic follow-up and subsequent studies of cluster formation. Meanwhile, it demonstrates the potential for probing early cluster formation with upcoming redshift surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and the Subaru Prime Focus Spectrograph survey.Comment: 6 pages, 3 figures, 1 table; Accepted for publication in ApJ

    Dust Attenuation in UV-selected Starbursts at High Redshift and their Local Counterparts: Implications for the Cosmic Star Formation Rate Density

    Full text link
    We present a new analysis of the dust obscuration in starburst galaxies at low and high redshift. This study is motivated by our unique sample of the most extreme UV-selected starburst galaxies in the nearby universe (z<0.3), found to be good analogs of high-redshift Lyman Break Galaxies (LBGs) in most of their physical properties. We find that the dust properties of the Lyman Break Analogs (LBAs) are consistent with the relation derived previously by Meurer et al. (M99) that is commonly used to dust-correct star formation rate measurements at a very wide range of redshifts. We directly compare our results with high redshift samples (LBGs, BzK, and sub-mm galaxies at z=2-3) having IR data either from Spitzer or Herschel. The attenuation in typical LBGs at z=2-3 and LBAs is very similar. Because LBAs are much better analogs to LBGs compared to previous local star-forming samples, including M99, the practice of dust-correcting the SFRs of high redshift galaxies based on the local calibration is now placed on a much more solid ground. We illustrate the importance of this result by showing how the locally calibrated relation between UV measurements and extinction is used to estimate the integrated, dust-corrected star formation rate density at z=2-6.Comment: Accepted for publication in ApJ Letters (6 pages, 4 figures, 1 table

    On the oxygen and nitrogen chemical abundances and the evolution of the "green pea" galaxies

    Full text link
    We have investigated the oxygen and nitrogen chemical abundances in extremely compact star-forming galaxies with redshifts between \sim0.11-0.35, popularly referred to as "green peas". Direct and strong-line methods sensitive to the N/O ratio applied to their SDSS spectra reveals that these systems are genuine metal-poor galaxies, with mean oxygen abundances 20% solar. At a given metallicity these galaxies display systematically large N/O ratios compared to normal galaxies, which can explain the strong difference between our metallicities measurements and previous ones. While their N/O ratios follow the relation with stellar mass of local star-forming galaxies in the SDSS, we find that the mass--metallicity relation of the "green peas" is offset \ga0.3 dex to lower metallicities. We argue that recent interaction-induced inflow of gas, possibly coupled with a selective metal-rich gas loss, driven by supernova winds, may explain our findings and the known galaxy properties, namely high specific star formation rates, extreme compactness, and disturbed optical morphologies. The "green pea" galaxy properties seem to be not common in the nearby Universe, suggesting a short and extreme stage of their evolution. Therefore, these galaxies may allow us to study in great detail many processes, such as starburst activity and chemical enrichment, under physical conditions approaching those in galaxies at higher redshifts.Comment: 8 pages, 3 Figures, ApJ Letters in press. Proof version with correction
    corecore