72 research outputs found

    Challenges and Opportunities for Ecosystem-Based Management and Marine Spatial Planning in the Irish Sea

    Get PDF
    Ecosystem-Based Management (EBM) integrates the connections between land, air, water and all living things including human beings and their institutions. The location of the Irish Sea, between major historical industrial centres, its history of use and exploitation, combined with its hydrographic characteristics, have led to the current patterns of use. EBM efforts have been ongoing for over a decade but political boundaries have led to fragmented governance. The forthcoming UK exit from the European Union (EU) may pose further challenges. This chapter examines articulations between political boundaries, spatial scales of Marine Spatial Planning and nested social-ecological systems including the gyre in the western Irish Sea, and Dublin Bay. Examples of emerging best practices are provided and the challenges of data availability for ecosystem services are considered

    Confronting Uncertainty in Wildlife Management: Performance of Grizzly Bear Management

    Get PDF
    Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone – discrepancy between expected and realized mortality levels – led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty. &nbsp

    Can interventions that aim to decrease Lyme disease hazard at non-domestic sites be effective without negatively affecting ecosystem health? A systematic review protocol

    Get PDF
    Background Lyme disease (LD) is the most commonly reported, broadly distributed vector-borne disease of the northern temperate zone. It is transmitted by ticks and, if untreated, can cause skin, cardiac, nervous system and musculoskeletal disease. The distribution and incidence of LD is increasing across much of North America and Western Europe. Interventions to decrease exposure to LD hazard by encouraging behavioural change have low acceptance in high risk groups, and a safe, effective human LD vaccine is not presently available. As a result, habitat level interventions to decrease LD hazard itself (i.e. levels of infected ticks) have been proposed. However, some interventions may potentially negatively affect ecosystem health, and consequentially be neither desirable, nor politically feasible. This systematic review will catalogue interventions that aim to reduce LD hazard at non-domestic sites, and examine the evidence supporting those which are unlikely to negatively affect ecosystem health. Methods The review will be carried out in two steps. First, a screening and cataloguing stage will be conducted to identify and characterise interventions to decrease LD hazard at non-domestic sites. Secondly, the subset of interventions identified during cataloguing as unlikely to negatively affect ecosystem health will be investigated. In the screening and cataloguing step literature will be collected through database searching using pre-chosen search strings, hand-searching key journals and reviewing the websites of public health bodies. Further references will be identified by contacting stakeholders and researchers. Article screening and assessment of the likely effects of interventions on ecosystem health will be carried out independently by two reviewers. A third reviewer will be consulted if disagreements arise. The cataloguing step results will be presented in tables. Study quality will then be assessed independently by two reviewers, using adapted versions of established tools developed in healthcare research. These results will be presented in a narrative synthesis alongside tables. Though a full meta-analysis is not expected to be possible, if sub-groups of studies are sufficiently similar to compare, a partial meta-analysis will be carried out

    Temporal and spatial instability in neutral and adaptive (MHC) genetic variation in marginal salmon populations

    Get PDF
    The role of marginal populations for the long-term maintenance of species’ genetic diversity and evolutionary potential is particularly timely in view of the range shifts caused by climate change. The Centre-Periphery hypothesis predicts that marginal populations should bear reduced genetic diversity and have low evolutionary potential. We analysed temporal stability at neutral microsatellite and adaptive MHC genetic variation over five decades in four marginal Atlantic salmon populations located at the southern limit of the species’ distribution with a complicated demographic history, which includes stocking with foreign and native salmon for at least 2 decades. We found a temporal increase in neutral genetic variation, as well as temporal instability in population structuring, highlighting the importance of temporal analyses in studies that examine the genetic diversity of peripheral populations at the margins of the species’ range, particularly in face of climate change

    Environmental occurrence, analysis, and toxicology of toxaphene compounds.

    Get PDF
    Toxaphene production, in quantities similar to those of polychlorinated biphenyls, has resulted in high toxaphene levels in fish from the Great Lakes and in Arctic marine mammals (up to 10 and 16 microg g-1 lipid). Because of the large variabiliity in total toxaphene data, few reliable conclusions can be drawn about trends or geographic differences in toxaphene concentrations. New developments in mass spectrometric detection using either negative chemical ionization or electron impact modes as well as in multidimensional gas chromatography recently have led researchers to suggest congener-specific approaches. Recently, several nomenclature systems have been developed for toxaphene compounds. Although all systems have specific advantages and limitations, it is suggested that an international body such as the International Union of Pure and Applied Chemistry make an attempt to obtain uniformity in the literature. Toxicologic information on individual chlorobornanes is scarce, but some reports have recently appeared. Neurotoxic effects of toxaphene exposure such as those on behavior and learning have been reported. Technical toxaphene and some individual congeners were found to be weakly estrogenic in in vitro test systems; no evidence for endocrine effects in vivo has been reported. In vitro studies show technical toxaphene and toxaphene congeners to be mutagenic. However, in vivo studies have not shown genotoxicity; therefore, a nongenotoxic mechanism is proposed. Nevertheless, toxaphene is believed to present a potential carcinogenic risk to humans. Until now, only Germany has established a legal tolerance level for toxaphene--0.1 mg kg-1 wet weight for fish

    A Synthesis of Tagging Studies Examining the Behaviour and Survival of Anadromous Salmonids in Marine Environments

    Get PDF
    This paper synthesizes tagging studies to highlight the current state of knowledge concerning the behaviour and survival of anadromous salmonids in the marine environment. Scientific literature was reviewed to quantify the number and type of studies that have investigated behaviour and survival of anadromous forms of Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar), brown trout (Salmo trutta), steelhead (Oncorhynchus mykiss), and cutthroat trout (Oncorhynchus clarkii). We examined three categories of tags including electronic (e.g. acoustic, radio, archival), passive (e.g. external marks, Carlin, coded wire, passive integrated transponder [PIT]), and biological (e.g. otolith, genetic, scale, parasites). Based on 207 papers, survival rates and behaviour in marine environments were found to be extremely variable spatially and temporally, with some of the most influential factors being temperature, population, physiological state, and fish size. Salmonids at all life stages were consistently found to swim at an average speed of approximately one body length per second, which likely corresponds with the speed at which transport costs are minimal. We found that there is relatively little research conducted on open-ocean migrating salmonids, and some species (e.g. masu [O. masou] and amago [O. rhodurus]) are underrepresented in the literature. The most common forms of tagging used across life stages were various forms of external tags, coded wire tags, and acoustic tags, however, the majority of studies did not measure tagging/handling effects on the fish, tag loss/failure, or tag detection probabilities when estimating survival. Through the interdisciplinary application of existing and novel technologies, future research examining the behaviour and survival of anadromous salmonids could incorporate important drivers such as oceanography, tagging/handling effects, predation, and physiology

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
    corecore