213 research outputs found

    Frequency Locking of an Optical Cavity using LQG Integral Control

    Full text link
    This paper considers the application of integral Linear Quadratic Gaussian (LQG) optimal control theory to a problem of cavity locking in quantum optics. The cavity locking problem involves controlling the error between the laser frequency and the resonant frequency of the cavity. A model for the cavity system, which comprises a piezo-electric actuator and an optical cavity is experimentally determined using a subspace identification method. An LQG controller which includes integral action is synthesized to stabilize the frequency of the cavity to the laser frequency and to reject low frequency noise. The controller is successfully implemented in the laboratory using a dSpace DSP board.Comment: 18 pages, 9 figure

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of content for Section 3, reports on ten research projects and a list of publications.U.S. Navy - Office of Naval Research Contract N00014-92-J-4098U.S. Federal Aviation Administration Contract 94-G-007U.S. Federal Aviation Administration Contract 97-G-031California Institute of Technology Contract JPL 960408National Aeronautics and Space Administration Contract JPL 958461U.S. Navy - Office of Naval Research Contract N00014-92-J-1616National Science Foundation Grant ECS 96-15799U.S. Navy - Office of Naval Research Contract N00014-97-1-0172Joint Services Electronics Program Contract DAAH04-95-1-0038Mitsubishi Corporatio

    Big issues for small feet : developmental, biomechanical and clinical narratives on children's footwear

    Get PDF
    The effects of footwear on the development of children's feet has been debated for many years and recent work from the developmental and biomechanical literature has challenged long-held views about footwear and the impact on foot development. This narrative review draws upon existing studies from developmental, biomechanical and clinical literature to explore the effects of footwear on the development of the foot. The emerging findings from this support the need for progress in [children's] footwear science and advance understanding of the interaction between the foot and shoe. Ensuring clear and credible messages inform practice requires a progressive evidence base but this remains big issue in children's footwear research

    Clinical Psychologists’ Firearm Risk Management Perceptions and Practices

    Get PDF
    The purpose of this study was to investigate the current perceptions and practices of discussing firearm risk management with patients diagnosed with selected mental health problems. A three-wave survey was mailed to a national random sample of clinical psychologists and 339 responded (62%). The majority (78.5%) believed firearm safety issues were greater among those with mental health problems. However, the majority of clinical psychologists did not have a routine system for identifying patients with access to firearms (78.2%). Additionally, the majority (78.8%) reported they did not routinely chart or keep a record of whether patients owned or had access to firearms. About one-half (51.6%) of the clinical psychologists reported they would initiate firearm safety counseling if the patients were assessed as at risk for self-harm or harm to others. Almost half (46%) of clinical psychologists reported not receiving any information on firearm safety issues. Thus, the findings of this study suggest that a more formal role regarding anticipatory guidance on firearms is needed in the professional training of clinical psychologists

    Binding of the human nucleotide excision repair proteins XPA and XPC/HR23B to the 5R-thymine glycol lesion and structure of the cis-(5R,6S) thymine glycol epimer in the 5′-GTgG-3′ sequence: destabilization of two base pairs at the lesion site

    Get PDF
    The 5R thymine glycol (5R-Tg) DNA lesion exists as a mixture of cis-(5R,6S) and trans-(5R,6R) epimers; these modulate base excision repair. We examine the 7:3 cis-(5R,6S):trans-(5R,6R) mixture of epimers paired opposite adenine in the 5′-GTgG-3′ sequence with regard to nucleotide excision repair. Human XPA recognizes the lesion comparably to the C8-dG acetylaminoflourene (AAF) adduct, whereas XPC/HR23B recognition of Tg is superior. 5R-Tg is processed by the Escherichia coli UvrA and UvrABC proteins less efficiently than the C8-dG AAF adduct. For the cis-(5R, 6S) epimer Tg and A are inserted into the helix, remaining in the Watson–Crick alignment. The Tg N3H imine and A N6 amine protons undergo increased solvent exchange. Stacking between Tg and the 3′-neighbor G•C base pair is disrupted. The solvent accessible surface and T2 relaxation of Tg increases. Molecular dynamics calculations predict that the axial conformation of the Tg CH3 group is favored; propeller twisting of the Tg•A pair and hydrogen bonding between Tg OH6 and the N7 atom of the 3′-neighbor guanine alleviate steric clash with the 5′-neighbor base pair. Tg also destabilizes the 5′-neighbor G•C base pair. This may facilitate flipping both base pairs from the helix, enabling XPC/HR23B recognition prior to recruitment of XPA

    Highly Precise and Developmentally Programmed Genome Assembly in Paramecium Requires Ligase IV–Dependent End Joining

    Get PDF
    During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5′ overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi–mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5′-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3′ ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a “cut-and-close” mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics
    corecore