989 research outputs found
Cross-Modal Multivariate Pattern Analysis
Multivariate pattern analysis (MVPA) is an increasingly popular method of analyzing functional magnetic resonance imaging (fMRI) data1-4. Typically, the method is used to identify a subject's perceptual experience from neural activity in certain regions of the brain. For instance, it has been employed to predict the orientation of visual gratings a subject perceives from activity in early visual cortices5 or, analogously, the content of speech from activity in early auditory cortices6
Current measurement by real-time counting of single electrons
The fact that electrical current is carried by individual charges has been
known for over 100 years, yet this discreteness has not been directly observed
so far. Almost all current measurements involve measuring the voltage drop
across a resistor, using Ohm's law, in which the discrete nature of charge does
not come into play. However, by sending a direct current through a
microelectronic circuit with a chain of islands connected by small tunnel
junctions, the individual electrons can be observed one by one. The quantum
mechanical tunnelling of single charges in this one-dimensional array is time
correlated, and consequently the detected signal has the average frequency
f=I/e, where I is the current and e is the electron charge. Here we report a
direct observation of these time-correlated single-electron tunnelling
oscillations, and show electron counting in the range 5 fA-1 pA. This
represents a fundamentally new way to measure extremely small currents, without
offset or drift. Moreover, our current measurement, which is based on electron
counting, is self-calibrated, as the measured frequency is related to the
current only by a natural constant.Comment: 9 pages, 4 figures; v2: minor revisions, 2 refs added, words added to
title, typos correcte
Gravitational waveforms for neutron star binaries from binary black hole simulations
Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of
the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter ⋋
Fast Visuomotor Processing of Redundant Targets: The Role of the Right Temporo-Parietal Junction
Parallel processing of multiple sensory stimuli is critical for efficient, successful interaction with the environment. An experimental approach to studying parallel processing in sensorimotor integration is to examine reaction times to multiple copies of the same stimulus. Reaction times to bilateral copies of light flashes are faster than to single, unilateral light flashes. These faster responses may be due to ‘statistical facilitation’ between independent processing streams engaged by the two copies of the light flash. On some trials, however, reaction times are faster than predicted by statistical facilitation. This indicates that a neural ‘coactivation’ of the two processing streams must have occurred. Here we use fMRI to investigate the neural locus of this coactivation. Subjects responded manually to the detection of unilateral light flashes presented to the left or right visual hemifield, and to the detection of bilateral light flashes. We compared the bilateral trials where subjects' reaction times exceeded the limit predicted by statistical facilitation to bilateral trials that did not exceed the limit. Activity in the right temporo-parietal junction was higher in those bilateral trials that showed coactivation than in those that did not. These results suggest the neural coactivation observed in visuomotor integration occurs at a cognitive rather than sensory or motor stage of processing
The twilight of the Liberal Social Contract? On the Reception of Rawlsian Political Liberalism
This chapter discusses the Rawlsian project of public reason, or public justification-based 'political' liberalism, and its reception. After a brief philosophical rather than philological reconstruction of the project, the chapter revolves around a distinction between idealist and realist responses to it. Focusing on political liberalism’s critical reception illuminates an overarching question: was Rawls’s revival of a contractualist approach to liberal legitimacy a fruitful move for liberalism and/or the social contract tradition? The last section contains a largely negative answer to that question. Nonetheless the chapter's conclusion shows that the research programme of political liberalism provided and continues to provide illuminating insights into the limitations of liberal contractualism, especially under conditions of persistent and radical diversity. The programme is, however, less receptive to challenges to do with the relative decline of the power of modern states
A single-blind randomised controlled trial of the effects of a web-based decision aid on self-testing for cholesterol and diabetes. study protocol
Background:
Self-tests, tests on body materials to detect medical conditions, are widely available to the general public. Self-testing does have advantages as well as disadvantages, and the debate on whether self-testing should be encouraged or rather discouraged is still ongoing. One of the concerns is whether consumers have sufficient knowledge to perform the test and interpret the results. An online decision aid (DA) with information on self-testing in general, and test specific information on cholesterol and diabetes self-testing was developed. The DA aims to provide objective information on these self-tests as well as a decision support tool to weigh the pros and cons of self-testing. The aim of this study is to evaluate the effect of the online decision aid on knowledge on self-testing, informed choice, ambivalence and psychosocial determinants.
Methods/Design:
A single blind randomised controlled trial in which the online decision aid 'zelftestwijzer' is compared to short, non-interactive information on self-testing in general. The entire trial will be conducted online. Participants will be selected from an existing Internet panel. Consumers who are considering doing a cholesterol or diabetes self-test in the future will be included. Outcome measures will be assessed directly after participants have viewed either the DA or the control condition. Weblog files will be used to record participants' use of the decision aid.
Discussion:
Self-testing does have important pros and cons, and it is important that consumers base their decision whether they want to do a self-test or not on knowledge and personal values. This study is the first to evaluate the effect of an online decision aid for self-testing
Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code
We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for ≈22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC’s ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent bam code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC
- …