228 research outputs found

    Hypersensitivity pneumonitis: an overlooked cause of cough and dyspnea.

    Get PDF
    Hypersensitivity pneumonitis (HP) is an immune-mediated pulmonary disorder involving inflammation of the lung interstitium, terminal bronchioles, and alveoli caused by the immune response to the inhalation of an offending environmental airborne agent. It can manifest as exertional dyspnea, fatigue, weight loss, and progressive respiratory failure if left untreated. Because of its protean features, it can be misdiagnosed as other common obstructive lung conditions such as asthma. If triggers are not avoided, it can progress to irreversible pulmonary fibrosis. In this article, we present the case of a 51-year-old male who presented to our hospital with recurrent bouts of dyspnea and cough, initially diagnosed as an asthma exacerbation. He received a final diagnosis of HP after investigation of his workplace revealed airborne spores and surface molds from multiple fungal species, serology revealed eosinophilia, and computed tomography showed bronchiectasis. Avoidance of occupational exposure resulted in significant improvement of his respiratory symptoms after two months

    A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe

    Get PDF
    Anaplasma phagocytophilum is the agent of tick-borne fever, equine, canine and human granulocytic anaplasmosis. The common route of A. phagocytophilum transmission is through a tick bite, the main vector in Europe being Ixodes ricinus. Despite the apparently ubiquitous presence of the pathogen A. phagocytophilum in ticks and various wild and domestic animals from Europe, up to date published clinical cases of human granulocytic anaplasmosis (HGA) remain rare compared to the worldwide status. It is unclear if this reflects the epidemiological dynamics of the human infection in Europe or if the disease is underdiagnosed or underreported. Epidemiologic studies in Europe have suggested an increased occupational risk of infection for forestry workers, hunters, veterinarians, and farmers with a tick-bite history and living in endemic areas. Although the overall genetic diversity of A. phagocytophilum in Europe is higher than in the USA, the strains responsible for the human infections are related on both continents. However, the study of the genetic variability and assessment of the difference of pathogenicity and infectivity between strains to various hosts has been insufficiently explored to date. Most of the European HGA cases presented as a mild infection, common clinical signs being pyrexia, headache, myalgia and arthralgia. The diagnosis of HGA in the USA was recommended to be based on clinical signs and the patient’s history and later confirmed using specialized laboratory tests. However, in Europe since the majority of cases are presenting as mild infection, laboratory tests may be performed before the treatment in order to avoid antibiotic overuse. The drug of choice for HGA is doxycycline and because of potential for serious complication the treatment should be instituted on clinical suspicion alone

    A cellular defense memory imprinted by early life toxic stress

    Get PDF
    Stress exposure early in life is implicated in various behavioural and somatic diseases. Experiences during the critical perinatal period form permanent, imprinted memories promoting adult survival. Although imprinting is widely recognized to dictate behaviour, whether it actuates specific transcriptional responses at the cellular level is unknown. Here we report that in response to early life stresses, Caenorhabditis elegans nematodes form an imprinted cellular defense memory. We show that exposing newly-born worms to toxic antimycin A and paraquat, respectively, stimulates the expression of toxin-specific cytoprotective reporters. Toxin exposure also induces avoidance of the toxin-containing bacterial lawn. In contrast, adult worms do not exhibit aversive behaviour towards stress-associated bacterial sensory cues. However, the mere re-encounter with the same cues reactivates the previously induced cytoprotective reporters. Learned adult defenses require memory formation during the L1 larval stage and do not appear to confer increased protection against the toxin. Thus, exposure of C. elegans to toxic stresses in the critical period elicits adaptive behavioural and cytoprotective responses, which do not form imprinted aversive behaviour, but imprint a cytoprotective memory. Our findings identify a novel form of imprinting and suggest that imprinted molecular defenses might underlie various pathophysiological alterations related to early life stress. © 2019, The Author(s)

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Intracellular Trafficking of Guanylate-Binding Proteins Is Regulated by Heterodimerization in a Hierarchical Manner

    Get PDF
    Guanylate-binding proteins (GBPs) belong to the dynamin family of large GTPases and represent the major IFN-γ-induced proteins. Here we systematically investigated the mechanisms regulating the subcellular localization of GBPs. Three GBPs (GBP-1, GBP-2 and GBP-5) carry a C-terminal CaaX-prenylation signal, which is typical for small GTPases of the Ras family, and increases the membrane affinity of proteins. In this study, we demonstrated that GBP-1, GBP-2 and GBP-5 are prenylated in vivo and that prenylation is required for the membrane association of GBP-1, GBP-2 and GBP-5. Using co-immunoprecipitation, yeast-two-hybrid analysis and fluorescence complementation assays, we showed for the first time that GBPs are able to homodimerize in vivo and that the membrane association of GBPs is regulated by dimerization similarly to dynamin. Interestingly, GBPs could also heterodimerize. This resulted in hierarchical positioning effects on the intracellular localization of the proteins. Specifically, GBP-1 recruited GBP-5 and GBP-2 into its own cellular compartment and GBP-5 repositioned GBP-2. In addition, GBP-1, GBP-2 and GBP-5 were able to redirect non-prenylated GBPs to their compartment in a prenylation-dependent manner. Overall, these findings prove in vivo the ability of GBPs to dimerize, indicate that heterodimerization regulates sub-cellular localization of GBPs and underscore putative membrane-associated functions of this family of proteins

    Targeted genome engineering via zinc finger nucleases

    Get PDF
    With the development of next-generation sequencing technology, ever-expanding databases of genetic information from various organisms are available to researchers. However, our ability to study the biological meaning of genetic information and to apply our genetic knowledge to produce genetically modified crops and animals is limited, largely due to the lack of molecular tools to manipulate genomes. Recently, targeted cleavage of the genome using engineered DNA scissors called zinc finger nucleases (ZFNs) has successfully supported the precise manipulation of genetic information in various cells, animals, and plants. In this review, we will discuss the development and applications of ZFN technology for genome engineering and highlight recent reports on its use in plants

    Clinical use of biomarkers of survival in pulmonary fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biologic predictors or biomarkers of survival in pulmonary fibrosis with a worse prognosis, more specifically in idiopathic pulmonary fibrosis would help the clinician in deciding whether or not to treat since treatment carries a potential risk for adverse events. These decisions are made easier if accurate and objective measurements of the patients' clinical status can predict the risk of progression to death.</p> <p>Method</p> <p>A literature review is given on different biomarkers of survival in interstitial lung disease, mainly in IPF, since this disease has the worst prognosis.</p> <p>Conclusion</p> <p>Serum biomarkers, and markers measured by medical imaging as HRCT, pertechnegas, DTPA en FDG-PET are not ready for clinical use to predict mortality in different forms of ILD. A baseline FVC, a change of FVC of more than 10%, and change in 6MWD are clinically helpful predictors of survival.</p

    Dendritic Spikes Amplify the Synaptic Signal to Enhance Detection of Motion in a Simulation of the Direction-Selective Ganglion Cell

    Get PDF
    The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within cortical circuitry
    corecore