251 research outputs found

    Radiographic knee osteoarthritis in ex-elite table tennis players

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Table tennis involves adoption of the semi-flexed knee and asymmetrical torsional trunk movements creating rotational torques on the knee joint which may predispose players to osteoarthritis (OA) of the knee. This study aims to compare radiographic signs of knee OA and associated functional levels in ex-elite male table tennis players and control subjects.</p> <p>Methods</p> <p>Study participants were 22 ex-elite male table tennis players (mean age 56.64 ± 5.17 years) with 10 years of involvement at the professional level and 22 non-athletic males (mean age 55.63 ± 4.08 years) recruited from the general population. A set of three radiographs taken from each knee were evaluated by an experienced radiologist using the Kellgren and Lawrence (KL) scale (0-4) to determine radiographic levels of OA severity. The intercondylar distance was taken as a measure of lower limb angulation. Participants also completed the pain, stiffness, and physical function categories of the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) 3.1 questionnaire.</p> <p>Results</p> <p>The results showed 78.3% of the ex-elite table tennis players and 36.3% of controls had varying signs of radiographic knee OA with a significant difference in the prevalence levels of definite radiographic OA (KL scale > 2) found between the two groups (<it>P </it>≤ 0.001). Based on the WOMAC scores, 68.2% of the ex-elite table tennis players reported symptoms of knee pain compared with 27.3% of the controls (<it>p </it>= 0.02) though no significant differences were identified in the mean physical function or stiffness scores between the two groups. In terms of knee alignment, 73.7% of the ex-elite athletes and 32% of the control group had signs of altered lower limb alignment (genu varum) (<it>p </it>= 0.01). Statistical differences were found in subjects categorized as having radiographic signs of OA and altered lower limb alignment (<it>p </it>= 0.03).</p> <p>Conclusions</p> <p>Ex-elite table tennis players were found to have increased levels of radiological signs of OA in the knee joint though this did not transpire through to altered levels of physical disability or knee stiffness in these players when compared with subjects from the general population suggesting that function in these players is not severely impacted upon.</p

    Phenotypic characterization and 16S rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, La Sal del Rey, in extreme South Texas (USA)

    Get PDF
    Background: La Sal del Rey ( the King’s Salt”) is one of several naturally-occurring salt lakes in Hidalgo County, Texas and is part of the Lower Rio Grande Valley National Wildlife Refuge. The research objective was to isolate and characterize halophilic microorganisms from La Sal del Rey. Water samples were collected from the lake and a small creek that feeds into the lake. Soil samples were collected from land adjacent to the water sample locations. Sample salinity was determined using a refractometer. Samples were diluted and cultured on a synthetic saline medium to grow halophilic bacteria. The density of halophiles was estimated by viable plate counts. A collection of isolates was selected, gram-stained, tested for catalase, and characterized using API 20E® test strips. Isolates were putatively identified by sequencing the 16S rDNA. Carbon source utilization by the microbial community from each sample site was examined using EcoPlate™ assays and the carbon utilization total activity of the community was determined. Results: Results showed that salinity ranged from 4 parts per thousand (ppt) at the lake water source to 420 ppt in water samples taken just along the lake shore. The density of halophilic bacteria in water samples ranged from 1.2 × 102 - 5.2 × 103 colony forming units per ml (cfu ml-1) whereas the density in soil samples ranged from 4.0 × 105 - 2.5 × 106 colony forming units per gram (cfu g-1). In general, as salinity increased the density of the bacterial community decreased. Microbial communities from water and soil samples were able to utilize 12 - 31 carbon substrates. The greatest number of substrates utilized was by water-borne communities compared to soil-based communities, especially at lower salinities. The majority of bacteria isolated were gram-negative, catalase-positive, rods. Biochemical profiles constructed from API 20E® test strips showed that bacterial isolates from low-salinity water samples (4 ppt) showed the greatest phenotypic diversity with regards to the types and number of positive tests from the strip. Isolates taken from water samples at the highest salinity (420 ppt) tended to be less diverse and have only a limited number of positive tests. Sequencing of 16S DNA displayed the presence of members of bacterial genera Bacillus, Halomonas, Pseudomonas, Exiguobacterium and others. The genus Bacillus was most commonly identified. None of the isolates were members of the Archaea probably due to dilution of salts in the samples. Conclusions: The La Sal del Rey ecosystem supports a robust and diverse bacterial community despite the high salinity of the lake and soil. However, salinity does appear to a limiting factor with

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding

    Get PDF
    BACKGROUND: At present, plant molecular systematics and DNA barcoding techniques rely heavily on the use of chloroplast gene sequences. Because of the relatively low evolutionary rates of chloroplast genes, there are very few choices suitable for molecular studies on angiosperms at low taxonomic levels, and for DNA barcoding of species. METHODOLOGY/PRINCIPAL FINDINGS: We scanned the entire chloroplast genomes of 12 genera to search for highly variable regions. The sequence data of 9 genera were from GenBank and 3 genera were of our own. We identified nearly 5% of the most variable loci from all variable loci in the chloroplast genomes of each genus, and then selected 23 loci that were present in at least three genera. The 23 loci included 4 coding regions, 2 introns, and 17 intergenic spacers. Of the 23 loci, the most variable (in order from highest variability to lowest) were intergenic regions ycf1-a, trnK, rpl32-trnL, and trnH-psbA, followed by trnS(UGA)-trnG(UCC), petA-psbJ, rps16-trnQ, ndhC-trnV, ycf1-b, ndhF, rpoB-trnC, psbE-petL, and rbcL-accD. Three loci, trnS(UGA)-trnG(UCC), trnT-psbD, and trnW-psaJ, showed very high nucleotide diversity per site (π values) across three genera. Other loci may have strong potential for resolving phylogenetic and species identification problems at the species level. The loci accD-psaI, rbcL-accD, rpl32-trnL, rps16-trnQ, and ycf1 are absent from some genera. To amplify and sequence the highly variable loci identified in this study, we designed primers from their conserved flanking regions. We tested the applicability of the primers to amplify target sequences in eight species representing basal angiosperms, monocots, eudicots, rosids, and asterids, and confirmed that the primers amplified the desired sequences of these species. SIGNIFICANCE/CONCLUSIONS: Chloroplast genome sequences contain regions that are highly variable. Such regions are the first consideration when screening the suitable loci to resolve closely related species or genera in phylogenetic analyses, and for DNA barcoding

    Evolution of High Trophic Diversity Based on Limited Functional Disparity in the Feeding Apparatus of Marine Angelfishes (f. Pomacanthidae)

    Get PDF
    The use of biting to obtain food items attached to the substratum is an ecologically widespread and important mode of feeding among aquatic vertebrates, which rarely has been studied. We did the first evolutionary analyses of morphology and motion kinematics of the feeding apparatus in Indo-Pacific members of an iconic family of biters, the marine angelfishes (f. Pomacanthidae). We found clear interspecific differences in gut morphology that clearly reflected a wide range of trophic niches. In contrast, feeding apparatus morphology appeared to be conserved. A few unusual structural innovations enabled angelfishes to protrude their jaws, close them in the protruded state, and tear food items from the substratum at a high velocity. Only one clade, the speciose pygmy angelfishes, showed functional departure from the generalized and clade-defining grab-and-tearing feeding pattern. By comparing the feeding kinematics of angelfishes with wrasses and parrotfishes (f. Labridae) we showed that grab-and-tearing is based on low kinematics disparity. Regardless of its restricted disparity, the grab-and-tearing feeding apparatus has enabled angelfishes to negotiate ecological thresholds: Given their widely different body sizes, angelfishes can access many structurally complex benthic surfaces that other biters likely are unable to exploit. From these surfaces, angelfishes can dislodge sturdy food items from their tough attachments. Angelfishes thus provide an intriguing example of a successful group that appears to have evolved considerable trophic diversity based on an unusual yet conserved feeding apparatus configuration that is characterized by limited functional disparity

    Cerebral gene expression in response to single or combined gestational exposure to methylmercury and selenium through the maternal diet

    Get PDF
    Controversy remains regarding the safety of consuming certain types of seafood, particularly during pregnancy. While seafood is rich in vital nutrients, it may also be an important source of environmental contaminants such as methylmercury (MeHg). Selenium (Se) is one essential element present in seafood, hypothesised to ameliorate MeHg toxicity. The aim of the present study was to ascertain the impact of Se on MeHg-induced cerebral gene expression in a mammalian model. Microarray analysis was performed on brain tissue from 15-day-old mice that had been exposed to MeHg throughout development via the maternal diet. The results from the microarray analysis were validated using qPCR. The exposure groups included: MeHg alone (2.6 mg kg−1), Se alone (1.3 mg kg−1), and MeHg + Se. MeHg was presented in a cysteinate form, and Se as Se–methionine, one of the elemental species occurring naturally in seafood. Eight genes responded to Se exposure alone, five were specific to MeHg, and 63 were regulated under the concurrent exposure of MeHg and Se. Significantly enriched functional classes relating to the immune system and cell adhesion were identified, highlighting potential ameliorating mechanisms of Se on MeHg toxicity. Key developmental genes, such as Wnt3 and Sparcl1, were also identified as putative ameliorative targets. This study, utilising environmentally realistic forms of toxicants, delivered through the natural route of exposure, in association with the power of transcriptomics, highlights significant novel information regarding putative pathways of selenium and MeHg interaction in the mammalian brain

    Dissociation between the Activity of the Right Middle Frontal Gyrus and the Middle Temporal Gyrus in Processing Semantic Priming

    Get PDF
    The aim of this event-related functional magnetic resonance imaging (fMRI) study was to test whether the right middle frontal gyrus (MFG) and middle temporal gyrus (MTG) would show differential sensitivity to the effect of prime-target association strength on repetition priming. In the experimental condition (RP), the target occurred after repetitive presentation of the prime within an oddball design. In the control condition (CTR), the target followed a single presentation of the prime with equal probability of the target as in RP. To manipulate semantic overlap between the prime and the target both conditions (RP and CTR) employed either the onomatopoeia “oink” as the prime and the referent “pig” as the target (OP) or vice-versa (PO) since semantic overlap was previously shown to be greater in OP. The results showed that the left MTG was sensitive to release of adaptation while both the right MTG and MFG were sensitive to sequence regularity extraction and its verification. However, dissociated activity between OP and PO was revealed in RP only in the right MFG. Specifically, target “pig” (OP) and the physically equivalent target in CTR elicited comparable deactivations whereas target “oink” (PO) elicited less inhibited response in RP than in CTR. This interaction in the right MFG was explained by integrating these effects into a competition model between perceptual and conceptual effects in priming processing

    Role of obesity in a randomized placebo-controlled trial of difluoromethylornithine (DFMO) + sulindac for the prevention of sporadic colorectal adenomas

    Get PDF
    BACKGROUND: Chemoprevention with the polyamine-inhibitory regimen difluoromethylornithine (DFMO) + sulindac markedly reduces risk of recurrent adenoma in colorectal adenoma patients. Obesity is associated with risk of colorectal adenoma and colorectal cancer. This study investigates how obesity influences risk of recurrent adenoma after prolonged treatment with DFMO + sulindac versus placebo. METHODS: Our analysis included subjects enrolled in the phase III colorectal adenoma prevention clinical trial investigating DFMO + sulindac versus placebo. Patients were classified by obesity (body mass index, BMI ≥ 30 kg/m(2)) status at baseline. Pearson χ(2) statistic and Mann–Whitney U test were used to compare baseline characteristics, including rectal tissue polyamine levels. Log-binomial regression analysis was used to determine the risk ratio (RR) of recurrent adenomas, adjusted for covariates and an interaction term for obesity and treatment. RESULTS: The final analytic cohort was comprised of 267 patients. In separate regression models, the risk of adenoma recurrence after treatment compared to placebo was similar for obese (RR = 0.32, 95 % CI 15–71) and non-obese patients (RR = 0.27, 95 % CI 15–49). No significant interaction was detected between obesity, treatment, and risk of colorectal adenoma in the full regression model (p(interaction) = 0.91). CONCLUSIONS: Obesity does not substantially modify the colorectal adenoma risk reduction ascribed to DFMO + sulindac versus placebo

    Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus

    Get PDF
    Background: Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages.Results: A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism.Conclusions: The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process

    Deciduous Trees and the Application of Universal DNA Barcodes: A Case Study on the Circumpolar Fraxinus

    Get PDF
    The utility of DNA barcoding for identifying representative specimens of the circumpolar tree genus Fraxinus (56 species) was investigated. We examined the genetic variability of several loci suggested in chloroplast DNA barcode protocols such as matK, rpoB, rpoC1 and trnH-psbA in a large worldwide sample of Fraxinus species. The chloroplast intergenic spacer rpl32-trnL was further assessed in search for a potentially variable and useful locus. The results of the study suggest that the proposed cpDNA loci, alone or in combination, cannot fully discriminate among species because of the generally low rates of substitution in the chloroplast genome of Fraxinus. The intergenic spacer trnH-psbA was the best performing locus, but genetic distance-based discrimination was moderately successful and only resulted in the separation of the samples at the subgenus level. Use of the BLAST approach was better than the neighbor-joining tree reconstruction method with pairwise Kimura's two-parameter rates of substitution, but allowed for the correct identification of only less than half of the species sampled. Such rates are substantially lower than the success rate required for a standardised barcoding approach. Consequently, the current cpDNA barcodes are inadequate to fully discriminate Fraxinus species. Given that a low rate of substitution is common among the plastid genomes of trees, the use of the plant cpDNA “universal” barcode may not be suitable for the safe identification of tree species below a generic or sectional level. Supplementary barcoding loci of the nuclear genome and alternative solutions are proposed and discussed
    corecore